Answer:Consider the right triangle formed by the complex number in the Argand-Gauss plane and it's projections on the axis. – José Siqueira Nov 12 '13 at 17:21
In particular what is the definition of sine of theta in terms of the known sides of the above mentioned right triangle? – Adam Nov 12 '13 at 17:27
Add a comment
3 Answers
1
Consider the following Argand-diagram
enter image description here
The y-axis is the imaginary axis and the x-axis is the real one. The complex number in question is
x+yi
To figure out θ, consider the right-triangle formed by the two-coordinates on the plane (illustrated in red). Let θ be the angle formed with the real axis.
tanθ=yx
⟹tan−1(yx)
The hypotenuse of the triangle will be
x2+y2−−−−−−√
Therefore,
Step-by-step explanation:
Answer:
x = -2 and y = 3
Step-by-step explanation:
It is given that,
4x + 5y = 7 -----(1)
3x – 2y = –12 ----(2)
<u>To find the value of x and y</u>
eq(1) * 3 ⇒
12x + 15y = 21 ----(3)
eq(2) * 4 ⇒
12x - 8y = -48 ---(4)
eq(3) - eq(4) ⇒
12x + 15y = 21 ----(3)
<u>12x - 8y = -48 </u> ---(4)
0 + 23y = 69
y = 69/23 = 3
Substitute the value of y in eq(1)
4x + 5y = 7 ----(1)
4x + 5*3 = 7
4x = 7 - 15 = -8
x = -8/4 = -2
Therefore x = -2 and y = 3
The anser is C for reasons of science ;)
Hello! i'm not quite sure if this is the answer, but i believe it would be 76. I'm not that good with angles, but i'm trying my best to help! I hope the answer helped you! i'm sorry if i get it wrong though. If you have any questions, pm me! thanks!
Answer:
Step-by-step explanation:
It's never negative.