Since the height of an equilateral triangle in terms of its side s is s√3/2, the height of the triangle is 6√3/2 = 3√3 and so the area is (1/2)(6)(3√3) = 9√3.
<span>If we draw a horizontal line a height of h from the base of the triangle, the region is split into two regions: the lower region consisting of a trapezoid of height h and the upper region consisting of a triangle of height 3√3 - h. </span>
<span>Since the upper triangle and the triangle itself are similar triangles, the base and height are proportional. If we let x denote the base of the length of the upper triangle, we have: </span>
<span>(S. of small triangle)/(S. of big triangle) = (Ht. of small triangle)/(Ht. of big triangle) </span>
<span>==> x/6 = (3√3 - h)/(3√3) </span>
<span>==> x = (6√3 - 2h)/√3 </span>
<span>Thus, the area of the upper triangle is: </span>
<span>A = (1/2)[(6√3 - 2h)/√3](3√3 - h) = [(6√3 - 2h)(3√3 - h)]/(2√3). </span>
<span>(Made a dumb mistake about the height here for some reason) </span>
<span>Since we require that the area of this triangle is to be half of the total area (9√3/2), we need to solve: </span>
<span>[(6√3 - 2h)(3√3 - h)]/(2√3) = 9√3/2 </span>
<span>==> (6√3 - 2h)(3√3 - h) = 27 </span>
<span>==> 54 - 6h√3 - 6h√3 + 2h^2 = 27 </span>
<span>==> 2h^2 - 12h√3 + 27 = 0. </span>
<span>Solving with the Quadratic Formula gives: </span>
<span>h = (6√3 + 3√6)/2 ≈ 8.87 units and h = (6√3 - 3√6)/2 ≈ 1.52 units. </span>
<span>Since h = (6√3 + 3√6)/2 would place the line outside of the triangle, we pick h = (6√3 - 3√6)/2. </span>
<span>Therefore, the line should be ==> (6√3 - 3√6)/2 units from the base. </span>
<span>I hope this helps! ^^ Brainliest Please?</span><span>
</span>
Answer:
Step-by-step explanation:
First you need to find the Slope Intercept form or find the point and slope.
The point is: (-2,3)
and the slope is: 1/2
y - 3 = 1/2(x + 2)
y - 3 = 1/2x + 1
y = 1/2x + 1 + 3
y = 1/2x + 4
Slope intercept form: y = 1/2x + 4
Graph is show below ---
|
V
Answer:
(a) ¬(p→¬q)
(b) ¬p→q
(c) ¬((p→q)→¬(q→p))
Step-by-step explanation
taking into account the truth table for the conditional connective:
<u>p | q | p→q </u>
T | T | T
T | F | F
F | T | T
F | F | T
(a) and (b) can be seen from truth tables:
for (a) <u>p∧q</u>:
<u>p | q | ¬q | p→¬q | ¬(p→¬q) | p∧q</u>
T | T | F | F | T | T
T | F | T | T | F | F
F | T | F | T | F | F
F | F | T | T | F | F
As they have the same truth table, they are equivalent.
In a similar manner, for (b) p∨q:
<u>p | q | ¬p | ¬p→q | p∨q</u>
T | T | F | T | T
T | F | F | T | T
F | T | T | T | T
F | F | T | F | F
again, the truth tables are the same.
For (c)p↔q, we have to remember that p ↔ q can be written as (p→q)∧(q→p). By replacing p with (p→q) and q with (q→p) in the answer for part (a) we can change the ∧ connector to an equivalent using ¬ and →. Doing this we get ¬((p→q)→¬(q→p))
Answer:
C) -$10,200
Step-by-step explanation:
If a monthly deduction for a mortgage costs $850, yearly it will cost $10,200, Thus reducing your balance by $10,200 yearly
Answer:
The inequality would be $49 + g is less than $55
Step-by-step explanation:
I think that g would be 1 because that would make the bill $52 and it says that he wants to keep the bill under $55 not the same as $55