<span>(5+2 i)(4-3i) - (5-2yi)(4-3i)
Factorize out (4 -3i)
(4 -3i)( (5 +2i) - (5 -2yi) )
= </span><span><span>(4 -3i)(5 +2i - 5 + 2yi)</span>
= </span><span><span>(4 -3i)(5 - 5 + 2i + 2yi)</span>
= (4 -3i)(2i + 2yi)
= (4 - 3i)(2 + 2y)i. Let's multiply the first two.
</span>
(4 - 3i)(2 + 2y) = 2*(4 -3i) + 2y*(4 - 3i)
= 8 - 6i + 8y - 6yi
= 8 + 8y - 6i - 6yi
(4 - 3i)(2 + 2y)i = (8 + 8y - 6i - 6yi)i Note: i² = -1
= 8i + 8yi - 6i² - 6yi²
= 8i + 8yi - 6(-1) - 6y(-1)
= 8i + 8yi + 6 + 6y
= 6 + 6y + 8i + 8yi
= (6 + 6y) + (8 + 8y)i In the form a + bi
Answer:
11. 3^2 • 3^5 < 3^8
12. 3^3 • 3^3 > 3^5
13. Option C.
Step-by-step explanation:
11. Which of the following expressions is true?
A. 4^3• 4^4 = 412
4^3• 4^4 = 4^7 = 16384 ❌
B. 5^2 • 5^3 > 5^5
5^2 • 5^3 = 5^5 ❌
C. 3^2 • 3^5 < 3^8
3^2 • 35 = 315 ✔️
D. 5^2 • 54 = 58
5^2 • 54 = 1350 ❌
12. Which of the following expressions is true?
A. 8^3 • 8^2 < 8^4
8^3 • 8^2 = 8^5 ❌
B. 4^4 • 4^4 = 4^16
4^4 • 4^4 = 4^8 ❌
C. 2^2 • 2^6 < 2^8
2^2 • 2^6 = 2^8 ❌
D. 3^3 • 3^3 > 3^5
3^3 • 3^3 = 3^6 ✔️
13. Write the value of the expression: 3^4/3^4
3^4/3^4 = 1
The correct answer is C. 1 ✔️
The minimum number of times would be 5 times.
Answer:

Step-by-step explanation: