A.) For n independent variates with the same
distribution, the standard deviation of their mean is the standard
deviation of an individual divided by the square root of the sample
size: i.e. s.d. (mean) = s.d. / sqrt(n)
Therefore, the standard deviation of of the average fill volume of 100 cans is given by 0.5 / sqrt(100) = 0.5 / 10 = 0.05
b.) In a normal distribution, P(X < x) is given by P(z < (x - mean) / s.d).
Thus, P(X < 12) = P(z < (12 - 12.1) / 0.05) = P(z < -2) = 1 - P(z < 2) = 1 - 0.97725 = 0.02275
c.) Let the required mean fill volume be u, then P(X < 12) = P(z < (12 - u) / 0.05) = 1 - P(z < (u - 12) / 0.05) = 0.005
P(z < (u - 12) / 0.05) = 1 - 0.005 = 0.995 = P(z < 2.575)
(u - 12) / 0.05 = 2.575
u - 12 = 2.575 x 0.05 = 0.12875
u = 12 + 0.12875 = 12.12875
Therefore, the mean fill volume should be 12.12875 so that the probability that the average of 100 cans is below 12 fluid ounces be 0.005.
d.) Let the required standard deviation of fill volume be s, then P(X < 12) = P(z <
(12 - 12.1) / s) = 1 - P(z < 0.1 / s) = 0.005
P(z < 0.1 / s) = 1 - 0.005 = 0.995 = P(z < 2.575)
0.1 / s = 2.575
s = 0.1 / 2.575 = 0.0388
Therefore, the standard deviation of fill volume should be 0.0388 so that the probability that the average of 100 cans is below 12 fluid ounces be 0.005.
e.) Let the required number of cans be n, then P(X < 12) = P(z <
(12 - 12.1) / (0.5/sqrt(n))) = 1 - P(z < (12.1 - 12) / (0.5/sqrt(n))) = 0.01
P(z < 0.1 / (0.5/sqrt(n))) = 1 - 0.01 = 0.99 = P(z < 2.327)
0.1 / (0.5/sqrt(n)) = 2.327
0.5/sqrt(n) = 0.1 / 2.327 = 0.0430
sqrt(n) = 0.5/0.0430 = 11.635
n = 11.635^2 = 135.37
Therefore, the number of cans that need to be measured such that the average fill volume is less than 12 fluid ounces be 0.01
Answer:
1. LM < PN
2. AD < DC
3. m<CAB < m<CBA
4. m<1 = m<2
Step-by-step explanation:
Recall: an angle measure is relative to the length of the opposite side. That is, the longer the side opposite to an angle, the larger the measure of that angle and vice versa.
1. LM is opposite to <LNM,
PN is opposite to <NLP
m<LNM is less than m<NLP, therefore,
LM < PN
2. AD is opposite to <ABD
DC is opposite to <DBC
m<ABD is less than m<DBC, therefore,
AD < DC
3. m<CAB is opposite to CB
m<CBA is opposite to CA
CB is less than CA, therefore,
m<CAB < m<CBA
4. The side opposite to <1 is congruent to the side opposite to <2.
Therefore,
m<1 = m<2
Answer:
C. 5x
Step-by-step explanation:
1400, as 1200 + 200 = 1,400 and 1600 - 200 = 1400.