Answer:
100%
Explanation:
This question involves two genes in guinea pigs; one coding for fur color and the other for fur length. The alleles of black fur (B) and short fur (F) is dominant over the alleles for brown fur (b) and long fur (f).
In a cross between two offsprings with genotypes: BBFF x bbff, the following gametes will be produced by each parent:
BBFF - BF, BF, BF, and BF
bbff - bf, bf, bf, bf
Using these gametes in a punnet square (see attached image), one will notice that all of the offsprings will have the genotype: BbFf i.e all or 100% of the offsprings are heterozygous for both of the genes or traits.
There are 56 neutrons. To find them, you just have to subtract the atomic number with the atomic mass. If you dont know, the atomic number is the number of protons (and electrons) in an atom. The atomic mass is the number of both the protons and neutrons. Of you subtract the atomic number, you get protons.
An oven mitt is used to take the tray out of the oven because its insulated, or padded.
To know what type of transport occurred the lab and collected data are needed. As they are not present an explanation of the different transport's types, will be given.
Water, proteins, ions, and molecules of different sizes can pass through the cell membrane using different types of transports. The transport that each molecule uses depends on the concentration, size, and polarity.
We can classify the types of transport as active and passive.
Passive transport is the one that does not need energy to happen since the molecules move from a place of high concentration to a one of lower concentration. In this group, we have:
- Simple diffusion: small molecules in high concentration on one side of the membrane; move to the other side due to the difference in concentration.
- Osmosis: water passes through the membrane from a place of low concentration of molecules to one of high concentration. Water moves inside or outside the cell to valance the concentration of solutes on both sides of the membrane.
- Facilitated diffusion: uses proteins to transport large molecules, ions, or hydrophobic molecules from one side to the other. In this type of transport, we have proteins that form channels so those hydrophobic molecules can pass through the lipid membrane, and carrier proteins, which binds to a specific molecule changing their shape and transporting the molecule.
Active transport needs the<em> energy</em> to transport molecules; since it goes against the gradient's concentration. In this group, we have:
- Sodium-Potassium pump: uses ATP to move sodium outside the cell and potassium to the inside. The ions with this transport go to where they are most concentrated.
In conclusion, there are different types of transport; they depend on the concentration or type of molecule. To find out what mechanism of transport occurred in the lab, look at the components of the experiment and analyze which of these transports could be present.
Learn more at:
brainly.com/question/18565254