The first thing we must do for this case is to define variables.
We have then:
x: number of slices
y: total cost
We write the linear function that relates the variables.
We have then:

Then, we evaluate the number of slices to find the total cost.
-two slices cost:
We substitute x = 2 in the given equation:

Answer:
two slices = 2.2 $
-ten slices cost:
We substitute x = 10 in the given equation:

Answer:
ten slices = 11 $
-half a slice cost:
We substitute x = 1/2 in the given equation:

Answer:
half a slice = 0.55 $
Answer:
i think 5 is the right answer
Answer:
a) r ⋀~p
b)(r⋀p)⟶q
c) ~r ⟶ ~q
d) (~p ⋀r) ⟶q
Step-by-step explanation:
To solve this question we will make use of logic symbols in truth table.
We are told that;
p means "The user enters
a valid password,”
q means “Access is granted,”
r means “The user has paid the
subscription fee”
A) The user has paid the subscription fee, but does not enter a valid
password.”
Fist part of the statement is correct and so it will be "r". Second part of the statement is a negation and will be denoted by ~p. Since both statements are joined together in conjunction, we will use the conjuction symbol in between them which is "⋀" Thus, we have; r ⋀~p
B) Still using logic symbols, we have;
(r⋀p)⟶q
⟶ means q is true when r and p are true.
C) correct symbol is ~r ⟶ ~q
Since both statements are negation of the question. And also, if ~r is true then ~q is also true.
D) Similar to answer A to C above, applying similar conditions, we have (~p ⋀r) ⟶q
Let X be the number of boys in n selected births. Let p be the probability of getting baby boy on selected birth.
Here n=10. Also the male and female births are equally likely it means chance of baby boy or girl is 1/2
P(Boy) = P(girl) =0.5
p =0.5
From given information we have n =10 fixed number of trials, p is probability of success which is constant for each trial . And each trial is independent of each other.
So X follows Binomial distribution with n=10 and p=0.5
The probability function of Binomial distribution for k number of success, x=k is given as
P(X=k) = 
We have to find probability of getting 8 boys in n=10 births
P(X=8) = 
= 45 * 0.0039 * 0.25
P(X = 8) = 0.0438
The probability of getting exactly 8 boys in selected 10 births is 0.044
Let

, so that

,

, and

. Then

Now let

, so that

. Then

Transform back to

to get

and again to get back a result in terms of

.