Answer:
D. 3
Step-by-step explanation:
For g(x) = |x|, we seem to have ...
f(x) = 3|x| = 3g(x) = a·g(x)
The value of 'a' is 3.
<span>C = total calories burned
r = rate of burning calories = 420 calories burned/hour
t = time in hours
C = 420 * t
</span>
Let the equal sides of the isosceles Δ ABC be x.
Given that the perimeter of Δ ABC = 50m.
Therefore, 2x + AC = 50 --- (1)
It is also given that the perimeter of Δ ABD = 40m.
Therefore, x + BD + AD = 40
BD is the median of the Δ ABC. Therefore, D is the midpoint of AC.
So AD = CD.
Or, AD =
AC
Therefore, 
Multiply both sides by 2.
2x + 2BD + AC = 80
From (1), 2x + AC = 50.
Therefore, 2BD + 50 = 80
2BD = 80 - 50
2BD = 30
BD = 15m.
83.3
Just add up all the numbers and divide by 6, as there are six numbers in this set of numbers
Add
4
x
4
x
to both sides of the equation.
y
=
−
28
+
4
x
y
=
-
28
+
4
x
Rewrite in slope-intercept form.
Tap for more steps...
y
=
4
x
−
28
y
=
4
x
-
28
Use the slope-intercept form to find the slope and y-intercept.
Tap for more steps...
Slope:
4
4
y-intercept:
−
28
-
28
Any line can be graphed using two points. Select two
x
x
values, and plug them into the equation to find the corresponding
y
y
values.
Tap for more steps...
x
y
2
−
20
3
−
16
x y 2 -20 3 -16
Graph the line using the slope and the y-intercept, or the points.
Slope:
4
4
y-intercept:
−
28
-
28
x
y
2
−
20
3
−
16
x y 2 -20 3 -16
image of graph
y
−
4
x
=
−
2
8
y
-
4
x
=
-
2
8
28
x
28
x
28
x
2
28
x
2
28
x
3
28
x
3