Answer:
The laws of pemdas say that exponent must come first.
Step-by-step explanation:
F( <em>x</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>^</em><em> </em><em>x</em>
<em>Y</em><em> </em><em>intercept</em><em> </em>
<em>Let</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em> </em><em>0</em>
<em>f</em><em>(</em><em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>1</em>
<em>f</em><em>(</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em>
<em>X</em><em> </em><em>intercept</em><em> </em>
<em>let</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>o</em>
<em>0</em><em> </em><em>=</em><em> </em><em>5</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>^</em><em>x</em>
<em>No</em><em> </em><em>x</em><em> </em><em>intercept</em><em>/</em><em> </em><em>zero</em>
<em>therefore</em><em> </em>
<em>Vertical</em><em> </em><em>intercept</em><em> </em><em>(</em><em>0</em><em>;</em><em> </em><em>5</em><em>)</em>
<em>Domain</em><em> </em><em>XER</em>
<em>▪︎</em><em>this</em><em> </em><em>refer</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>X</em>
Answer:
c is the answer since you are trying to make the ys number (-/+) of the value the other y contains
(3) so you will multiply the first equation by -3 to be able to eliminate y
<span>180
n is the number of games. In this case it is 15. Enter this number into the function:
b(n) = 12n = 12(15) = 180.
Simply put, 12 balls are needed for each game.
15 x 12 = 180</span>
Given:
A company wants to select 1 project from a set of 4 possible projects.
Consider the options are:
a.
b.
c.
d. 
To find:
The constraints that ensures only 1 will be selected.
Solution:
It is given that the company wants to select 1 project from a set of 4 possible projects. It means the sum of selected projects must be equal to 1.

Therefore, the correct option is (a).