Answer:
<em> </em><em>here </em><em>9</em><em>*</em><em>1</em><em>0</em><em>^</em><em>4</em><em> </em><em>is </em><em>a </em><em>square </em><em>number </em>
Step-by-step explanation:
<em>9</em><em>*</em><em>1</em><em>0</em><em>^</em><em>4</em><em> </em><em>=</em><em> </em><em>9</em><em>0</em><em>0</em><em>0</em><em>0</em>
<em>and </em><em>it </em><em>is </em><em>a </em><em>square </em><em>of </em><em>3</em><em>0</em><em>0</em><em> </em>
Answer:
y>-3 y>-7
Step-by-step explanation:
-(y+5)>2
y<-7
Answer:
a.) write an equation to represent this situation
Step-by-step explanation:
Answer:
Sam is incorrect
Step-by-step explanation:
We can calculate the lengths of the diagonals using Pythagoras' identity.
The diagonals divide the rectangle and square into 2 right triangles.
Consider Δ SRQ from the rectangle
SQ² = SR² + RQ² = 12² + 6² = 144 + 36 = 180 ( take square root of both sides )
SQ =
≈ 13.4 in ( to 1 dec. place )
Consider Δ ONM from the square
OM² = ON² + NM² = 6² + 6² = 36 + 36 = 72 ( take square root of both sides )
OM =
≈ 8.5 in ( to 1 dec. place )
Now 2 × OM = 2 × 8.5 = 17 ≠ 13.4
Then diagonal OM is not twice the length of diagonal SQ
Answer:
<em>tan 19° = 0.3443</em>
Step-by-step explanation:
<u>Value Of Trigonometric Functions</u>
The value of the tangent of 19° cannot be expressed in exact form, that it, as a function of radicals or known constants as pi.
We need to use a calculator, computer, or similar technology to find the required value. We use a scientific calculator to get:
tan 19° = 0.3443
To the nearest ten-thousandth