Answer:
1. 15x^7y^2 + 4x^3 => x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x => 3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy => 3xy(5x^6y + 2)
4. 15x^7 + 10y^2 => 5(3x^7 + 2y^2)
Step-by-step explanation:
To obtain the answer to the question, first let us factorise each expression. This is illustrated below:
1. 15x^7y^2 + 4x^3
Common factor is x^3, therefore the expression is written as:
x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x
Common factor is 3x, therefore the expression is written as:
3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy
Common factor is 3xy, therefore the expression is written as:
3xy(5x^6y + 2)
4. 15x^7 + 10y^2
Common factor is 5, therefore the expression can be written as:
5(3x^7 + 2y^2)
Answer:
The function is A = 10√r
Step-by-step explanation:
* Lets explain the meaning of direct variation
- The direct variation is a mathematical relationship between two
variables that can be expressed by an equation in which one
variable is equal to a constant times the other
- If Y is in direct variation with x (y ∝ x), then y = kx, where k is the
constant of variation
* Now lets solve the problem
# A is varies directly with the square root of r
- Change the statement above to a mathematical relation
∴ A ∝ √r
- Chang the relation to a function by using a constant k
∴ A = k√r
- To find the value of the constant of variation k substitute A and r
by the given values
∵ r = 16 when A = 40
∵ A = k√r
∴ 40 = k√16 ⇒ simplify the square root
∴ 40 = 4k ⇒ divide both sides by 4 to find the value of k
∴ 10 = k
- The value of the constant of variation is 10
∴ The function describing the relationship of A and r is A = 10√r
Answer:
Step-by-step explanation:
this question has already been answered on gauth math
( 3 x 10^9 ) x ( 2 x 10^17 ) = 6 x 10 ^ 26