x = 37.5 (or) 
Solution:
Given 
AC = 50, DE = 30, EC = 25, BE = x, BC = 25 + x
To find the value of x:
Property of similar triangles:
If two triangles are similar then the corresponding angles are congruent and the corresponding sides are in proportion.


Do cross multiplication, we get


Subtract 30x from both sides of the equation.

Divide by 20 on both sides of the equation, we get
x = 37.5 (or) 
Hence the value of x is 37.5 or
.
Answer:
First bank last function
Second blank, the middle function
Third blank, middle function
Fourth blank, first function
Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

Answer:
since M lies between point A and B , we came to know that,
M(4,6) =(x,y)
A(-2,-1)=(x1 ,y1)
B( _, _ )=(x2,y2)
Now using mid point formula,
x=x1×x2÷2 y=y1+y2÷2
so, point B is (10,13)
After you cut off 6 pieces, the rope is 18.25 inches long