Answer:
Explanation:
1. Increasing the concentrations of reactants in a chemical reaction would affect a reaction positively by increasing the number of collisions within a particular period which in turn increases the rate of reaction.
2. The molecules gains energy,which enable them to move faster and collide with the right energy for a reaction to take place.
3. The average kinetic motion of molecules in a solution can be measured by measuring the temperature. Temperature is a measure of the average kinetic energy of molecules in a solution.
Bicarbonate buffer system in blood consists of carbonic acid and bicarbonate ion. H2CO3/HCO3-
When a base enters the body the acid part of the buffer reacts with the base.
Thats the carbonic acid (H2CO3) reacts with the base.
Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.
The average acceleration is -5.0 m·s⁻².
The formula for acceleration (<em>a</em>) is
= 25 m·s⁻¹;
= 0;
= 5.0 s
∴
= -5.0 m·s⁻²
The negative sign tells you that the object is <em>slowing down</em>, i.e., it is <em>decelerating</em>.
1.d
2.g
3.j
4.i
5.c
6.h
7.e
8.b
9.a
10.f