Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
<span>when the number of moles Ca = mass of Ca / molar mass of Ca.
and we can get the molar mass of Ca, it is = 40 g/mol
and we have already the mass of Ca (given) = 9.8 g
so, by substitution: the moles Ca = 9.8 g / 40 g/mol
= 0.245 moles</span>
Im guessing and i think the answer is yes.
A. good conductors is not a characteristic of metals out of all the other followings.
The limiting reactant is chlorine (Cl2).
<u>Explanation</u>:
Limiting reactant is the amount of product formed which gets limited by the reagent without continuing it.
2 Al + 3 Cl2 ==> 2 AlCl3 represents the balanced equation.
Number of moles Al present = 34 g Al x 1 mole Al / 26.98 g
= 1.260 g moles of Al
Number of moles Cl2 present = 39 g Cl2 x 1 mole Cl2 / 35.45 g
= 1.10 g moles of Cl2
Dividing each reactant by it's coefficient in the balanced equation obtains:
1.260 moles Al / 2 = 0.63 g moles of Al
1.11 moles Cl2 / 3 = 0.36 g moles of Cl2
The reactant which produces a lesser amount of product is called as limiting reactant.
Here the Limiting reactant is Cl2.