A microscope is an instrument which makes an object appear bigger than it is. It took the invention of this relatively simple tool to lead to the discovery of cells<span>. In the 1660s, Robert Hooke began using microscopes to look at all sorts of materials. Anton van Leeuwenhoek took up similar work in the 1670s.</span>
Because it is malleable and doesn't melt/burn easily.
The correct answer is primary growth
Answer:
The correct answer is "I, II, and III".
Explanation:
The missing options of this question are:
I only
II only
III only
I, II, and III
The correct answer is "I, II, and III".
Antibiotics are of different spectrums of activity depending on the number of pathogens they can kill. They are different reasons for this differences in antibiotic specificity:
I. Antibiotics interrupt processes found in some but not all pathogen cells. For instance, some antibiotics are directed to cell walls that not all bacteria posses.
II. Some pathogens have no metabolic processes to interrupt. The antibiotics that are directed to metabolic reactions of bacteria are not effective in treating viruses because they do not perform this metabolic reactions.
III. Some pathogens have developed genetic resistance to specific antibiotics. Bacteria have a remarkable genetic plasticity having plasmids that can be easily transmitted among them, which give them antibiotic resistance.
Answer:
100%
Explanation:
No matter how many factors are in the cross, if an 2 purebred (homozygous individuals) are crossed, (one dominant, one recessive) the dominant phenotype will always be displayed.
Imagine a cross with between two individuals true breeding for 6 traits. One shows all dominant genotypes, one shows all recessive genotypes. The only gametes those individuals can pass on will always produce heterozygotes.
AABBCCDDEEFFGG x aabbccddeeffgg
The first individual can only give ABCDEFG alleles. The second individual can only give abcdefg alleles. Therefore, all offspring will be AaBbCcDdEeFfGg, and will therefore express the dominant trait.