Answer:
B. As the distance between loci increases, some multiple crossovers go undetected such that the relationship between recombination frequency and map distance ceases to be linear.
Explanation:
When calculating recombination frequencies, and hence, map distances, we might notice that these distances are not completely additive. They might vary. <em>For example, let us say that we have three genes, A, B, and C, in that order. </em>We calculated that the <em>distance between A and B equals 5.9</em> MU and that <em>B and C are 19.5 MU apart.</em> According to this, we might say that the <em>total distance between A and C is 25.4 MU (5.9 + 19.5). </em>However, after a<em> two-point calculation between A and C, the value equals 23.7 MU. </em>
The recombination frequency between these two genes located in the extremes and far apart underestimate the actual genetic distances between them because there might occur other crossing-overs that were not detected. This is <em>when calculating the distance between A and C, we probably will not detect the occurrence of a double recombinant between them, and hence, we might sub-estimate the real distance.</em>
The relationship between the actual map distance (number of crossing overs) and the recombination frequency between two loci, is not lineal. The farther apart are the two genes, the worse is the distance estimation.
Answer:
Enzymes can only be used once
Explanation:
Enzymes are there forever
Answer:
The answer is B.
Explanation:
It's Because 10% of 100 is 10.
The answer is A, Viruses
Viruses cannot reproduce on their own , so they have to inject their DNA or RNA into the nucleuus of a cell. By doing this, the virus will take over that cells and within times, that cells will pop up and producing more viruses.
This reproduced virus will repeat the same process until our immune systems stop them