Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Midpoint Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (-4, -5)
Point (4, 7)
<u>Step 2: Find Midpoint</u>
Simply plug in your coordinates into the midpoint formula to find midpoint
- Substitute [MF]:

- Add:

- Divide:

Area of square = 5 x 5 = 25
area of trapezoid = 1/2(2+5)(4) = 28/2 = 14
area of figure = 25 + 14 = 39
answer
39 in^2
<span>The practical range is all real numbers from 58 to 81.2 inclusive </span>
Jake sells 153,
Sara sold 76.
Cole sells 306.
538-153-76=309
A=(-1,4)=(xa,ya)→xa=-1, ya=4
B=(-2,1)=(xb,yb)→xb=-2, yb=1
C=(2,1)=(xc,yc)→xc=2, yc=1
Perimeter <span>of ∆ABC: P=AB+BC+AC
AB=d A-B=sqrt [ (xb-xa)^2+(yb-ya)^2 ]
AB=sqrt [ (-2-(-1))^2+(1-4)^2]
AB=sqrt [ (-2+1)^2+(-3)^2]
AB=sqrt [ (-1)^2+9]
AB=sqrt [ 1+9]
AB=sqrt [10]
AB=3.162277660
</span>BC=d B-C=sqrt [ (xc-xb)^2+(yc-yb)^2 ]
BC=sqrt [ (2-(-2))^2+(1-1)^2]
BC=sqrt [ (2+2)^2+(0)^2]
BC=sqrt [ (4)^2+0]
BC=sqrt [ 16+0]
BC=sqrt [16]
BC=4
AC=d A-C=sqrt [ (xc-xa)^2+(yc-ya)^2 ]
AC=sqrt [ (2-(-1))^2+(1-4)^2]
AC=sqrt [ (2+1)^2+(-3)^2]
AC=sqrt [ (3)^2+9]
AC=sqrt [ 9+9]
AC=sqrt [9*2]
AC=sqrt [9] * sqrt [2]
AC=3 sqrt [2]
AC=3 (1.414213562)
AC=4.242640686
P=AB+BC+AC
P=3.162277660+4+4.242640686
P=11.40491834
To the nearest tenth:
P=11.4
Answer: <span>The perimeter of ∆ABC is 11.4 units</span>