Answer:
The hypothesis test is right-tailed
Step-by-step explanation:
To identify a one tailed test, the claim in the case study tests for the either of the two options of greater or less than the mean value in the null hypothesis.
While for a two tailed test, the claim always test for both options: greater and less than the mean value.
Thus given this: H0:X=10.2, Ha:X>10.2, there is only the option of > in the alternative claim thus it is a one tailed hypothesis test and right tailed.
A test with the greater than option is right tailed while that with the less than option is left tailed.
Answer:
25.
Step-by-step explanation:
I am assuming you only mean the small triangles, not the composite ones.
The second triangle set has 3 triangles on bottom row and 1 on the top - total 4.
The 3rd triangle set has 5 triangles on the bottom , 3 on the next up and 1 on the top - total 9
Following the pattern 4th set will have the number of triaNGLES
7 + 5 + 3 + 1 = 16.
So the 5th will have 9 + 7 + 5 + 3 +1 = 25 triangles.
Yes, we can obtain a diagonal matrix by multiplying two non diagonal matrix.
Consider the matrix multiplication below
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \left[\begin{array}{cc}e&f\\g&h\end{array}\right] = \left[\begin{array}{cc}a e+b g&a f+b h\\c e+d g&c f+d h\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%20e%2Bb%20g%26a%20f%2Bb%20h%5C%5Cc%20e%2Bd%20g%26c%20f%2Bd%20h%5Cend%7Barray%7D%5Cright%5D%20)
For the product to be a diagonal matrix,
a f + b h = 0 ⇒ a f = -b h
and c e + d g = 0 ⇒ c e = -d g
Consider the following sets of values

The the matrix product becomes:
![\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}\frac{1}{3}&-1\\-\frac{1}{4}&\frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{1}{3}-\frac{1}{2}&-1+1\\1-1&-3+2\end{array}\right]= \left[\begin{array}{cc}-\frac{1}{6}&0\\0&-1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D%26-1%5C%5C-%5Cfrac%7B1%7D%7B4%7D%26%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B2%7D%26-1%2B1%5C%5C1-1%26-3%2B2%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5Cfrac%7B1%7D%7B6%7D%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D)
Thus, as can be seen we can obtain a diagonal matrix that is a product of non diagonal matrices.
What are the ordered pairs