Answer:
discount price = 0.75p
Step-by-step explanation:
100%-25% = 75% or 0.75
Answer:
x = 8 tickets
Step-by-step explanation:
Given that,
Mage has $36 to spend on movie tickets.
Each movie ticket costs $4.50.
Let he bought x tickets. ATQ,
4.50x = 36

So, he can buy 8 tickets.
Answer:
a) 0.2416
b) 0.4172
c) 0.0253
Step-by-step explanation:
Since the result of the test should be independent of the time , then the that the test number of times that test proves correct is independent of the days the river is correct .
denoting event a A=the test proves correct and B=the river is polluted
a) the test indicates pollution when
- the river is polluted and the test is correct
- the river is not polluted and the test fails
then
P(test indicates pollution)= P(A)*P(B)+ (1-P(A))*(1-P(B)) = 0.12*0.84+0.88*0.16 = 0.2416
b) according to Bayes
P(A∩B)= P(A/B)*P(B) → P(A/B)=P(A∩B)/P(B)
then
P(pollution exists/test indicates pollution)=P(A∩B)/P(B) = 0.84*0.12 / 0.2416 = 0.4172
c) since
P(test indicates no pollution)= P(A)*(1-P(B))+ (1-P(A))*P(B) = 0.84*0.88+ 0.16*0.12 = 0.7584
the rate of false positives is
P(river is polluted/test indicates no pollution) = 0.12*0.16 / 0.7584 = 0.0253
Answer:
Length of the canal on the map is 16.4 centimeters.
Step-by-step explanation:
If actual length of Panama Canal = 20 kilometers
and length of the canal on map = 4 centimeters
Then scale factor = 
= 
= 
If the actual length of Panama Canal = 82 kilometers
Then the length of canal on the map = Actual length × Scale factor
= 
= 16.4 centimeters
Therefore, length of the canal on the map is 16.4 centimeters.
Answer:
0.3 years
Step-by-step explanation:
With problems like these, I always like to start by breaking down the information into smaller pieces.
μ = 13.6
σ = 3.0
Survey of 100 self-employed people
(random variable) X = # of years of education
So now we have some notation, where μ represents population mean and σ represents population standard deviation. Hopefully, you already know that the sample mean of x-bar is the same as the population mean, so x-bar = 13.6. Now, the question asks us what the standard deviation is. Since the sample here is random, we can use the Central Limit Theorem, which allows us to guess that a distribution will be approximately normal for large sample sizes (that is, n ≥ 30). In this case, our sample size is 100, so that is satisfied. We're also told our sample is random, so we're good there, too. Now all we have to do is plug some stuff in.
The Central Limit Theorem says that for large values of n, x-bar follows an approximately normal distribution with sample mean = μ and sample standard deviation = σ/√n. So, with that info, all we need to do to find the standard deviation of x-bar is to plug our σ and n into the above formula.
σ(x-bar) = σ/√n
σ(x-bar) = 3.0/√100
σ(x-bar) = 0.3
So your answer here is .3 years.