Answer:
I think the answer to the second one is D, and that means the first one is purple
Step-by-step explanation:
Answer:
The doubling time of this investment would be 9.9 years.
Step-by-step explanation:
The appropriate equation for this compound interest is
A = Pe^(rt), where P is the principal, r is the interest rate as a decimal fraction, and t is the elapsed time in years.
If P doubles, then A = 2P
Thus, 2P = Pe^(0.07t)
Dividing both sides by P results in 2 = e^(0.07t)
Take the natural log of both sides: ln 2 = 0.07t.
Then t = elapsed time = ln 2
--------- = 0.69315/0.07 = 9.9
0.07
The doubling time of this investment would be 9.9 years.
Answer:
3(x + 2)(2x - 5)
Step-by-step explanation:
Given
6x² - 3x - 30 ← factor out 3 from each term
= 3(2x² - x - 10) ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 10 = - 20 and sum = - 1
The factors are + 4 and - 5
Use these factors to split the x- term
2x² + 4x - 5x - 10 ( factor the first/second and third/fourth terms )
= 2x(x + 2) - 5(x + 2) ← factor out (x + 2) from each term
= (x + 2)(2x - 5), thus
2x² - x - 10 = (x + 2)(2x - 5) and
6x² - 3x - 30
= 3(x + 2)(2x - 5) ← in factored form