Area of rectangle = 1035 cm^2
length of rectangle = 3 cm
width of rectangle = ?
area = length *width
1035 = 3*w
w = 1035/3
w = 345
Answer:
We need to conduct a hypothesis in order to check if the mean the actual mean length of movies released during 2010-2015 is more than the data base value (a;ternative hypothesis) ,so then the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
Step-by-step explanation:
Data given and notation
represent the sample mean
represent the sample standard deviation
sample size
represent the value that we want to test
represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
represent the p value for the test (variable of interest)
State the null and alternative hypotheses.
We need to conduct a hypothesis in order to check if the mean the actual mean length of movies released during 2010-2015 is more than the data base value (a;ternative hypothesis) ,so then the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
Answer:
½ sec²(x) + ln(|cos(x)|) + C
Step-by-step explanation:
∫ tan³(x) dx
∫ tan²(x) tan(x) dx
∫ (sec²(x) − 1) tan(x) dx
∫ (sec²(x) tan(x) − tan(x)) dx
∫ sec²(x) tan(x) dx − ∫ tan(x) dx
For the first integral, if u = sec(x), then du = sec(x) tan(x) dx.
∫ u du = ½ u² + C
Substituting back:
½ sec²(x) + C
For the second integral, tan(x) = sin(x) / cos(x). If u = cos(x), then du = -sin(x) dx.
∫ -du / u = -ln(u) + C
Substituting back:
-ln(|cos(x)|) + C
Therefore, the total integral is:
½ sec²(x) + ln(|cos(x)|) + C
x = 83°
Solution:
The reference image to the answer is given below.
Sum of the adjacent angles in a straight line = 180°
⇒ ∠1 + ∠2 + ∠3 = 180° (Refer image)
⇒ 56° + ∠2 + 41° = 180°
⇒ 56° + 41° + ∠2 = 180°
⇒ 97° + ∠2 = 180°
⇒ ∠2 = 180° – 97°
⇒ ∠2 = 83°
In the given image ∠5 and ∠2 are vertically opposite angles.
<u>Vertical angle theorem:</u>
Vertically opposite angles are equal.
⇒ ∠5 = ∠2
⇒ x = ∠2
⇒ x = 83°
Hence the measure of angle x is 83°.
Answer:
- Hayes family: 35 hours
- Rodrigues family: 40 hours
Step-by-step explanation:
Let x and y represent the usage hours by the Hayes and Rodrigues families, respectively. The problem statement gives us relations that can be used to write equations for volume of use and for total hours.
15x +30y = 1725 . . . . . total liters of use
x + y = 75 . . . . . . . . . total hours of use
The second equation lets us write an expression for y:
y = 75 -x
This can be substituted into the first equation to give ...
15x +30(75 -x) = 1725
-15x + 2250 = 1725 . . . . . . simplify
-15x = -525 . . . . . . . . . . . subtract 2250
x = 35 . . . . . . . . . . . . . . divide by -15
y = 75 -35 = 40
The Hayes family used their sprinklers for 35 hours; the Rodrigues family used theirs for 40 hours.