Step-by-step explanation:
As seen from the graph, the curve crosses the x-axis when x = -1 and x = 1. The y-intercept of the curve is -1.
Hence, the quadratic equation of the curve is y = x^2 - 1.
Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
Yo answer to yo question is d
Answer:
a_n = 2^(n - 1) 3^(3 - n)
Step-by-step explanation:
9,6,4,8/3,…
a1 = 3^2
a2 = 3 * 2
a3 = 2^2
As we can see, the 3 ^x is decreasing and the 2^ y is increasing
We need to play with the exponent in terms of n
Lets look at the exponent for the base of 2
a1 = 3^2 2^0
a2 = 3^1 2^1
a3 = 3^ 0 2^2
an = 3^ 2^(n-1)
I picked n-1 because that is where it starts 0
n = 1 (1-1) =0
n=2 (2-1) =1
n=3 (3-1) =2
Now we need to figure out the exponent for the 3 base
I will pick (3-n)
n =1 (3-1) =2
n =2 (3-2) =1
n=3 (3-3) =0
The car traveled 23600 meters