1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
4 years ago
12

If $5000 is invested at 7.8% interest compounded monthly, how much would you have after 54 months?

Mathematics
1 answer:
Nuetrik [128]4 years ago
6 0

5000 x (1+0.078/12)^54

5000 x (1.0065)^54

$7094.37

You might be interested in
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Please help i have an exam next week and im really stuck on this
ruslelena [56]

Answer:

Area = 96 square cm

Step-by-step explanation:

Area of the figure = (2 x Area of triangles) + Area of square

Area \ of \ triangle = \frac{1}{2} \times base \ height = \frac{1}{2} \times 8\times 4 = 16cm^2\\\\Area \ of \ square = side \times side = 8 \times 8 = 64cm^2

Therefore, Area \ of \ the\ figure = (2 \times 16) + 64 = 32 + 64 = 96cm^2

6 0
3 years ago
Read 2 more answers
If ab = 10 and a2 + b2 = 30, what is the value of<br> (a + b)^2?
Bogdan [553]
Ab=10
a^2+b^2=30
((a+b)^2=a^2+2ab+b^2=a^2+b^2+2*10=30+20=50

6 0
3 years ago
Read 2 more answers
Look at the figure. Which construction is illustrated? 7. Which is the equation of the line with slope 3 that contains point (−1
kenny6666 [7]

Answer:

Option B

Step-by-step explanation:

I can't do the 'figure question' because it lacks info, but I can answer the point-slope question.

Point-slope form is: y-y_1=m(x-x_1)

'm' - slope

'(x1, y1)' - point

We are given the slope of 3 and the point (-1, 5).

Replace 'x1', 'y1', and 'm' with the appropriate values.

y-y_1=m(x-x_1)\rightarrow \boxed{y-5=3(x+1)}

Option B should be the correct answer.

7 0
3 years ago
Pete went to the store. He bought 3 pounds of chili peppers, 5 pounds of habanero peppers,
tangare [24]
Chili peppers: 3 pounds x $2 per lb = $6
Habanero peppers: 5 pounds x $2 per lb = $10
Red bell peppers: 1 pound x $2 = $2
6+10+2= $18 dollars spent total
6 0
2 years ago
Other questions:
  • I need help with both preferably with the Pascal’s Triangle.
    15·2 answers
  • What is the greatest common factor of 24,60 and 36
    8·2 answers
  • What’s 3 5/8 as a fraction
    6·1 answer
  • You conduct a statistical test of hypotheses and find that the null hypothesis is statistically significant at level α = 0.05. Y
    15·1 answer
  • Help will give brainlessly
    15·1 answer
  • Erin runs laps each day on a track that is 4/8 miles long. This week, she ran 4 4/8 miles on the track. How many laps did she ru
    9·1 answer
  • The figure below is a parallelogram. Find the measure of the<br> variables.
    12·1 answer
  • Phân tích các đa thức: <br> x^3+3x^2+3x+1
    15·1 answer
  • Riley and Rhoda plan to buy several bags of dog food and a dog collar. each bag of food cost $7, and the dog collar cost $5.
    11·1 answer
  • −5y2−3y−2, when y=2.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!