What is the degree of the polynomial below? 4x^3+3x^2+6x+5
A. 0
B. 3
C. 1
D. 2
2 answers:
Answer: Option B.
Step-by-step explanation:
The polynomials con be classified according to the numbers of terms they have and according to the highest exponent.
The degree of a polynomial can be determined by the exponents of the variable. The highest exponent will be the degree of the polynomial.
Then, for the given polynomial ( ), you can note that the highest exponent of the variable x is: 3.
Therefore, the degree of the polynomial is:
3 (This is the option B).
Answer:
B. 3
Step-by-step explanation:
The degree of this polynomial is based on the highest power on the exponents (if there is more than one variable, it is based on the sum)
The highest power is 3, so the degree is 3
You might be interested in
Step-by-step explanation:
0.9(17) -2.7(3) =
15.3-8.1
=7.2
....$1.07 each .....$1.15 each
Answer: =
7
/7344 (Decimal: 0.000953)
Answer:
Step-by-step explanation:
1/3x > -4
cross multiply
1>-4 × 3x
1>-12x
solve for x
x = -1/12
The expression (-4x + 9)^2 cannot be equal to (-4x)^2 + 9^2 because it is actually equal to the product of two factors (3 + 2sqrt x) (3- 2 sqrt x). One cannot use obviously distributive property. Hence the answer to this problem should be C. as she did not understand both perfect square trinomial and did not determine the product