Answer:
Stomata are the organs present on the stem and leaves of the plant and help in the gaseous exchange and evaporating water present in the aerial parts of the plant. Mainly leaves stomata plays role in gaseous exchange and transpiration which is the evaporation of the aerial water of plants by opening and closing the stomata. Stomata are small pores mostly and normally present under the leaves and regulated by the guard cells, dum bell shaped cells to close or close it.
Other than closing and opening the stomata, stomata density also can affect the rate of gas exchange as well as transpiration. Stomata density is the presence of the numbers of the stomata per unit area. In heat or sunny area the stomata density is higher than the shady or dark area to increase the transpiration in order to cool down the leaves of the plant which prevent the chloroplast proteins to denature.
Forearm is called the Antebrachial, while the shoulder blade is called the scapular.
The proteins exhibit four levels of organization:
1. Primary structure: It refers to a sequence of amino acids join together by the peptide bonds to produce a polypeptide chain.
2. Secondary structure: It is a localized twisting of the polypeptide chain by producing a hydrogen bond. Two types are formed, that is, the alpha helix and beta pleated sheet.
3. Tertiary structure: It refers to the three-dimensional composition of a polypeptide chain. The folding is not regular as it is in secondary composition. It produces ionic bonds, hydrophobic interactions, disulfide bond, and hydrogen bond amongst the polypeptide chains.
4. Quaternary structure: It comprises an amalgamation of two or more polypeptide chains that functions as a single functional unit. The bonds are identical as in tertiary composition.
Thus, the levels of secondary, tertiary, and quaternary protein structure would get affected if all the hydrogen bonding associations were inhibited.
Answer:
The main role of the decomposer in any ecosystem is to recycle nutrients once organisms die and recycle nutrients in waste.