Answer:
x=6
Step-by-step explanation:
ln 1=0
x-5=1
x=6
Solution :
We know that

At least one mean is different form the others (claim)
We need to find the critical values.
We know k = 3 , N = 35, α = 0.05
d.f.N = k - 1
= 3 - 1 = 2
d.f.D = N - k
= 35 - 3 = 32
SO the critical value is 3.295
The mean and the variance of each sample :
Goust Jet red Cloudtran


The grand mean or the overall mean is(GM) :


= 52.1714
The variance between the groups

![$=\frac{\left[14(50.5-52.1714)^2+14(52.07143-52.1714)^2+7(55.71426-52.1714)^2\right]}{3-1}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B%5Cleft%5B14%2850.5-52.1714%29%5E2%2B14%2852.07143-52.1714%29%5E2%2B7%2855.71426-52.1714%29%5E2%5Cright%5D%7D%7B3-1%7D%24)

= 63.55714
The Variance within the groups



= 20.93304
The F-test statistics value is :


= 3.036212
Now since the 3.036 < 3.295, we do not reject the null hypothesis.
So there is no sufficient evidence to support the claim that there is a difference among the means.
The ANOVA table is :
Source Sum of squares d.f Mean square F
Between 127.1143 2 63.55714 3.036212
Within 669.8571 32 20.93304
Total 796.9714 34
Answer:
The corresponding angles are congruent and the corresponding sides are congruent.
Step-by-step explanation:
Answer: The unit circle contains values for sine, cosine, and tangent.
Step-by-step explanation: The coordinates on the unit circle are the sine ratio and cosine ratio. From this, the tangent, secant, cosecant, and cotangent can be found.
Answer:
(1) D.Angle C is congruent to to Angle F. (2) C. SSS. (3) C. cannot be congruent to.
Step-by-step explanation:
1)
From the given figure it is noticed that


According to SAS postulate, if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then both triangles are congruent.
The included angles of congruent sides are angle C and angle G.
So, condition "Angle C is congruent to to Angle F" will prove that the ∆ABC and ∆EFG are congruent by the SAS criterion.
2)
If 
According to SSS postulate, if all three sides in one triangle are congruent to the corresponding sides in the other.
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore SSS criterion for congruence is violated.
3)
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore the included angle of congruent sides are different.

Therefore angle C and angle F cannot be congruent to each other.