Answer:
infinite solutions
Step-by-step explanation:
it means that all x are solution of this equation as 6=6 is always true
A) Composite function that represents how many flowers Iris can expect to bloom over a certain number of weeks is f[s(w)] = 50w + 25.
B) The unit of measurement for the composite function is flowers.
C) Number of the flowers for 30 weeks will be 1525.
<h3>What is a composite function?</h3>
A function is said to be a composite function when a function is written in another function. The composite function that represents the number of flowers is f[s(w)] = 50w + 25. and the number of flowers for 30 weeks is 1525.
Part A: Write a composite function that represents how many flowers Iris can expect to bloom over a certain number of weeks.
From the given data we will find the function for the number of flowers with time.
f(s) = 2s + 25
We have s(w) = 25w
f[(s(w)]=2s(w) + 25
f[(s(w)] = 2 x ( 25w ) +25
f[s(w)] = 50w + 25.
Part B: What are the units of measurement for the composite function in Part A
The expression f[s(w)] = 50w + 25 will give the number of the flowers blooming over a number of the weeks so the unit of measurement will be flowers.
Part C: Evaluate the composite function in Part A for 30 weeks.
The expression f[s(w)] = 50w + 25 will be used to find the number of flowers blooming in 30 weeks put the value w = 30 to get the number of the flowers.
f[s(w)] = 50w + 25.
f[s(w)] = (50 x 30) + 25.
f[s(w)] = 1525 flowers.
Therefore the composite function is f[s(w)] = 50w + 25. unit will be flowers and the number of flowers in 30 weeks will be 1525.
To know more about composite functions follow
brainly.com/question/10687170
#SPJ1
Answer:
a is 60 b is 48
Step-by-step explanation:and i will get the rest to you when i am done
Answer:
One possible equation is
, which is equivalent to
.
Step-by-step explanation:
The factor theorem states that if
(where
is a constant) is a root of a function,
would be a factor of that function.
The question states that
and
are
-intercepts of this function. In other words,
and
would both set the value of this quadratic function to
. Thus,
and
would be two roots of this function.
By the factor theorem,
and
would be two factors of this function.
Because the function in this question is quadratic,
and
would be the only two factors of this function. In other words, for some constant
(
):
.
Simplify to obtain:
.
Expand this expression to obtain:
.
(Quadratic functions are polynomials of degree two. If this function has any factor other than
and
, expanding the expression would give a polynomial of degree at least three- not quadratic.)
Every non-zero value of
corresponds to a distinct quadratic function with
-intercepts
and
. For example, with
:
, or equivalently,
.
Answer:
The answer is 54.4
Step-by-step explanation: