Answer:
1. m=4/9
2.m=-26/7
3.m=0
Step-by-step explanation:
Formula: Y=mx+b
1.y
=
4
/9
x
−
25
/9
2.y
=
−
26
/7
x
+
452
/7
3.y=17
✨Hope this helps!✨
5 People can be chosen in 1287 ways if the order in which they are chosen is not important.
Step-by-step explanation:
Given:
Total number of students= 13
Number of Students to be selected= 5
To Find :
The number of ways in which the 5 people can be selected=?
Solution:
Let us use the permutation and combination to solve this problem

So here , n =13 and r=5 ,
So after putting the value of n and r , the equation will be





Answer:
Number of the peoples were satisfied with the career guidance are 300 .
Step-by-step explanation:
Formula

As given
A survey with a two-point scale was conducted in an organization.
It concluded that 85% of the respondents were unsatisfied with the career guidance they were provided.
If 2,000 people participated in the survey.
Total value = 2000
Percentage = 85%
Putting all the values in the formula



Part value = 1700
i.e
People not satisfied by the career guidance = 1700
People satisfied by the career guidance = Total people participated in survey - People not satisfied by the career guidance .
Putting the values in the above
= 2000 - 1700
= 300
Therefore the number of the peoples were satisfied with the career guidance are 300 .
let's firstly change the 1.2 to a fraction
![1.\underline{2}\implies \cfrac{12}{1\underline{0}}\implies \cfrac{6}{5} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{\frac{6}{5}}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{6}{5}}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{10}}}\implies \cfrac{~~ \frac{6-30}{5}~~}{-6}\implies \cfrac{~~ \frac{-24}{5}~~}{-6}\implies \cfrac{~~ -\frac{24}{5}~~}{-\frac{6}{1}}](https://tex.z-dn.net/?f=1.%5Cunderline%7B2%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B1%5Cunderline%7B0%7D%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D-%5Cstackrel%7By1%7D%7B6%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B6-30%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B-24%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20-%5Cfrac%7B24%7D%7B5%7D~~%7D%7B-%5Cfrac%7B6%7D%7B1%7D%7D)
![-\cfrac{\stackrel{4}{~~\begin{matrix} 24 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{5}\cdot -\cfrac{1}{\underset{1}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\implies \boxed{\cfrac{4}{5}}](https://tex.z-dn.net/?f=-%5Ccfrac%7B%5Cstackrel%7B4%7D%7B~~%5Cbegin%7Bmatrix%7D%2024%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B5%7D%5Ccdot%20-%5Ccfrac%7B1%7D%7B%5Cunderset%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B4%7D%7B5%7D%7D)
Function h has the largest y-intercept which is 44
Step-by-step explanation:
Any linear function is represented in the form

Here b is the y-intercept of the linear function i.e. the constant term in the function.
We will compare all the functions with the general form we get
y-intercept of f(x) = 1
y-intercept of g(x) = 8
y-intercept of h(x) = 44
y-intercept of j(x) = 0
Hence,
Function h has the largest y-intercept which is 44
Keywords: intercepts, linear functions
Learn more about intercepts at:
#LearnwithBrainly