Probably the easiest way to do this is to use synthetic division. We already know one of the zeros of the quadratic so we can use that number to find the other zero. If the point is (4, 0), then when y = 0, x = 4. Thus, 4 is a zero. Put 4 outside the "box" and put the coefficients from the quadratic inside, like this: 4 (1 -1 -12). Draw a line and bring down the first one under it. Multiply that 1 by the 4 to get 4. Put that 4 up under the -1 and add to get 3. Multiply 3 by 4 to get 12. Put that 12 up under the -12 and add to get 0. The numbers left under the line are the coefficients for the next polynomial, called the depressed polynomial, and this polyomial is one degree less than the one we started with. Those coefficients are 1 and 3. Therefore, the polynomial is x + 3 = 0. That means that the other zero, or x-intercept, is x = -3.
Answer:
Table B
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
<em>Verify table B</em>
For
-----> 
For
-----> 
For
-----> 
For
-----> 
The values of k are the same
therefore
The table B shows y as DIRECTLY PROPORTIONAL to x
<em>Verify table D</em>
For
-----> 
For
-----> 
For
-----> 
For
-----> 
the values of k are different
therefore
The table D not shows y as DIRECTLY PROPORTIONAL to x
Your answers are
A = 35.7°
B = 67.6°
C = 76.7°
cosine law
![a^2 = b^2 + c^2 -2bc \cos A \\ -2bc \cos A = a^2 - b^2 - c^2 \\ \\ \cos A = \dfrac{a^2 - b^2 - c^2}{-2bc} \\ \\ A = \cos^{-1}\left[ \dfrac{a^2 - b^2 - c^2}{-2bc} \right] \\ \\ A = \cos^{-1}\left[ \dfrac{12^2 - 19^2 - 20^2}{-2(19)(20)} \right] \\ \\ A = 35.723697](https://tex.z-dn.net/?f=a%5E2%20%3D%20b%5E2%20%2B%20c%5E2%20-2bc%20%5Ccos%20A%20%5C%5C%0A-2bc%20%5Ccos%20A%20%3D%20a%5E2%20-%20b%5E2%20-%20c%5E2%20%5C%5C%20%5C%5C%0A%5Ccos%20A%20%3D%20%5Cdfrac%7Ba%5E2%20-%20b%5E2%20-%20c%5E2%7D%7B-2bc%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%20%5Cdfrac%7Ba%5E2%20-%20b%5E2%20-%20c%5E2%7D%7B-2bc%7D%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%20%5Cdfrac%7B12%5E2%20-%2019%5E2%20-%2020%5E2%7D%7B-2%2819%29%2820%29%7D%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2035.723697)
A = 35.723697
sine law for the rest of the angles
![\displaystyle \frac{\sin B}{b} = \frac{\sin A}{a} \\ \\ \sin B = \frac{b \sin A}{a} \\ \\ B = \sin^{-1} \left[ \frac{b \sin A}{a} \right] \\ \\ B = \sin^{-1} \left[ \frac{19 \sin 35.723697 }{12} \right] \\ \\ B \approx 67.58886795](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%3D%20%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%5C%5C%20%5C%5C%0A%5Csin%20B%20%3D%20%5Cfrac%7Bb%20%5Csin%20A%7D%7Ba%7D%20%5C%5C%20%5C%5C%0AB%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Bb%20%5Csin%20A%7D%7Ba%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AB%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B19%20%5Csin%2035.723697%20%7D%7B12%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AB%20%5Capprox%2067.58886795)
B = 67.58886795
All angles in triangle sum to 180 so find C with that
A + B + C = 180
C = 180 - A - B
C = 180 - 35.723697 - 67.58886795
C = 76.7°
2 and 4 are the answers that apply to this statement
Answer:
a)

b)
The total amount accrued, principal plus interest, from compound interest on an original principal of $ 4,200.00 at a rate of 3.6% per year compounded 12 times per year over 10 years is $5667.28.
Step-by-step explanation:
a. Write the function that represents the value of the account at any time, t.
The function that represents the value of the account at any time, t

where
P represents the principal amount
r represents Annual Rate
n represents the number of compounding periods per unit t, at the end of each period
t represents the time Involve
b) What will the value be after 10 years?
Given
The principal amount P = $4200
Annual Rate r = 3.6% = 3.6/100 = 0.036
Compounded monthly = n = 12
Time Period = t
To Determine:
The total amount A = ?
Using the formula

substituting the values


$
Therefore, the total amount accrued, principal plus interest, from compound interest on an original principal of $ 4,200.00 at a rate of 3.6% per year compounded 12 times per year over 10 years is $5667.28.