Answer:
we need a picture or something to look at to know what the question is
Step-by-step explanation:
Answer:
Part (A): The correct option is true.
Part (B): The null and alternative hypothesis should be:

Step-by-step explanation:
Consider the provided information.
Part (A)
A random sample of 100 students from a large university.
Increasing the sample size decreases the confidence intervals, as it increases the standard error.
If the researcher increase the sample size to 150 which is greater than 100 that will decrease the confidence intervals or the researcher could produce a narrower confidence interval.
Hence, the correct option is true.
Part (B)
The researcher wants to identify that whether there is any significant difference between the measurement of the blood pressure.
Therefore, the null and alternative hypothesis should be:

Total = 242 + 307 = 549 but 242 ordered salad
so
242 / 549 = 0.4408 = 44.08%
answer
C. 44.08%
Answer:
The set of polynomial is Linearly Independent.
Step-by-step explanation:
Given - {f(x) =7 + x, g(x) = 7 +x^2, h(x)=7 - x + x^2} in P^2
To find - Test the set of polynomials for linear independence.
Definition used -
A set of n vectors of length n is linearly independent if the matrix with these vectors as columns has a non-zero determinant.
The set is dependent if the determinant is zero.
Solution -
Given that,
f(x) =7 + x,
g(x) = 7 +x^2,
h(x)=7 - x + x^2
Now,
We can also write them as
f(x) = 7 + 1.x + 0.x²
g(x) = 7 + 0.x + 1.x²
h(x) = 7 - 1.x + 1.x²
Now,
The coefficient matrix becomes
A = ![\left[\begin{array}{ccc}7&1&0\\7&0&1\\7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%261%260%5C%5C7%260%261%5C%5C7%26-1%261%5Cend%7Barray%7D%5Cright%5D)
Now,
Det(A) = 7(0 + 1) - 1(7 - 7) + 0
= 7(1) - 1(0)
= 7 - 0 = 7
⇒Det(A) = 7 ≠ 0
As the determinant is non- zero ,
So, The set of polynomial is Linearly Independent.
<span>Simplifying
4x2 + -24x + 4y2 + 72y = 76
Reorder the terms:
-24x + 4x2 + 72y + 4y2 = 76
Solving
-24x + 4x2 + 72y + 4y2 = 76
Solving for variable 'x'.
Reorder the terms:
-76 + -24x + 4x2 + 72y + 4y2 = 76 + -76
Combine like terms: 76 + -76 = 0
-76 + -24x + 4x2 + 72y + 4y2 = 0
Factor out the Greatest Common Factor (GCF), '4'.
4(-19 + -6x + x2 + 18y + y2) = 0
Ignore the factor 4.
</span><span>Subproblem 1
Set the factor '(-19 + -6x + x2 + 18y + y2)' equal to zero and attempt to solve:
Simplifying
-19 + -6x + x2 + 18y + y2 = 0
Solving
-19 + -6x + x2 + 18y + y2 = 0
The solution to this equation could not be determined.
This subproblem is being ignored because a solution could not be determined.
The solution to this equation could not be determined.</span>