Answer:
a) ![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
b) ![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
c) ![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
d) ![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
e) ![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
Step-by-step explanation:
Let define some notation:
[L]= represent longitude , [T] =represent time
And we have defined:
s(t) a position function


Part a
If we do the dimensional analysis for v we got:
![v = \frac{[L]}{[T]} = LT^{-1}](https://tex.z-dn.net/?f=%20v%20%3D%20%5Cfrac%7B%5BL%5D%7D%7B%5BT%5D%7D%20%3D%20LT%5E%7B-1%7D)
Part b
For the acceleration we can use the result obtained from part a and we got:
![a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}](https://tex.z-dn.net/?f=%20a%20%3D%20%5Cfrac%7B%5BL%7D%7BT%7D%5E%7B-1%7D%5D%7D%7B%7BT%7D%7D%3D%20L%20T%5E%7B-1%7D%20T%5E%7B-1%7D%3D%20L%20T%5E%7B-2%7D)
Part c
From definition if we do the integral of the velocity respect to t we got the position:

And the dimensional analysis for the position is:
![\int v dt = s(t) = [L]=L](https://tex.z-dn.net/?f=%20%5Cint%20v%20dt%20%3D%20s%28t%29%20%3D%20%5BL%5D%3DL)
Part d
The integral for the acceleration respect to the time is the velocity:

And the dimensional analysis for the position is:
![\int a dt = v(t) = [L][T]^{-1}=LT^{-1}](https://tex.z-dn.net/?f=%20%5Cint%20a%20dt%20%3D%20v%28t%29%20%3D%20%5BL%5D%5BT%5D%5E%7B-1%7D%3DLT%5E%7B-1%7D)
Part e
If we take the derivate respect to the acceleration and we want to find the dimensional analysis for this case we got:
![\frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bda%7D%7Bdt%7D%3D%20%5Cfrac%7B%5BL%5D%5BT%5D%5E%7B-2%7D%7D%7BT%7D%20%3D%20%5BL%5D%5BT%5D%5E%7B-2%7D%20%5BT%5D%5E%7B-1%7D%20%3D%20LT%5E%7B-3%7D)
7/8times16/1 gives 112/8, which is 14.
you multiply both numerators over both denominators.
142.35 miles. Just multiply 189.80 by 3/4 (or .75).
Answer:
We reject H₀
we accept Hₐ seeds in the packet would germinate smaller than 93%
Step-by-step explanation:
Test of proportions
One tail-test (left side)
93 % = 0.93
p₀ = 0,93
1.- Hypothesis
<h3>
H₀ ⇒ null hypothesis p₀ = 0.93</h3><h3>
Hₐ ⇒ Alternative hypothesis p = 0.875</h3><h3>
2.-Confidence interval 95 %</h3><h3>
α = 0,05 </h3><h3>
and </h3><h3>
z(c) = - 1.64</h3><h3>
3.- Compute z(s)</h3><h3>
z(s) = (p - p₀)/√(p₀*q₀)/n z(s) = (0.875-0.93)/√0.93*0.07)200</h3><h3>
z(s) = - 0,055/ √0.0003255</h3><h3>
z(s) = - 0.055/ 0.018</h3><h3>
z(s) = - 3,06</h3><h3>
4.-Compere z(c) and z(s)</h3><h3>
z(s) < z(c) -3.06 < -1.64</h3><h3>
z(s) is in rejection region, we reject H₀</h3>
They would be 0.00005524 miles apart because 1 in equals 0.00001578 miles