So, the definite integral 
Given that
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
,
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932
Answer:
Equation: 
Step-by-step explanation:
By definition, the perimeter of a figure can be calculated by adding the lenghts of its sides.
Knowing this, you can write the following equation:
<em> [Equation 1]</em>
According to the data given in the exercise, the perimeter in feet of the fighter is:

Therefore, you can substitute this values into<em> [Equation 1]:</em>

Finally, you must solve for "x" in order to find its value. This is:

Answer:
Let L be the length of the rectangle and w be the width of the rectangle.
"The lenght of a rectangle is one less than twice the width" means L=2W-1
Using perimeter formula of a rectangle which is P=2(L+W) you have:
P=2(L+W)
130=2(2W-1+W)
Solve equation above to find W
130=2(3W-1)
130=6W-2
130+2=6W
132=6W
W=22
From here you find L=2W-1=2x22-1=43
Only thing left is to find area A=LxW
x=12
x/16-1-4=1/2
multiply by both sides
x-4=8
move constant to the right side of and change its sign
x=8+4
add the numbers
x=12
37 because you add 13+10=23 7+7=14 and 23+14=37