n + q = 35
n = 35-q
0.05n + 0.25q = 8.15
0.05(35-q) +0.25q = 8.15
1.75 -0.05q + 0.25q =8.15
1.75 + 0.20q = 8.15
0.20q = 6.40
q = 6.40 / 0.20 = 32
32 quarters and 3 nickels
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B = C → A = C - B
→ B = C - A
Use the Double Angle Identity: cos 2A = 2 cos² A - 1
→ (cos 2A + 1)/2 = cos² A
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]
Use Even/Odd Identity: cos (-A) = cos (A)
<u>Proof LHS → RHS:</u>
LHS: cos² A + cos² B + cos² C

![\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201%2B%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Ccos%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1%2B%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Ccos%5E2%20C)

![\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%201%2B%5Ccos%20C%5B%5Ccos%20%28A-B%29%2B%5Ccos%20C%5D)
![\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201%2B%5Ccos%20C%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%2BC%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B-C%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1%2B2%5Ccos%20C%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2B%28C-B%29%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B-B-%28C-A%29%7D%7B2%7D%5Cbigg%29)


LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C 
The height would be the same as the rectangular piece of paper as well as the length so what you would do is you do heights times Lanks divide that by two and you would get the Square inches of the banner hope it helps
Answer:
Solution given:
we have
m<PTQ=m<RTS
x+20=3x+12.
20-12=3x-x
x=

now
16.m<PTQ=x+20=4+20=24°
17.
again
m<PTR+m<PTQ=180°[supplementary]
so
m<PTR=180°-24°<u>=1</u><u>5</u><u>6</u><u>°</u><u> </u><u>i</u><u>s</u><u> </u><u>your</u><u> </u><u>answer</u>
3/25
4/38=2/19
54/7=7 5/7
48/9=16/3=5 1/3