1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
3 years ago
9

Suppose △FMN≅△HQR . Which congruency statements are true? Select each correct answer. NF¯¯¯¯¯¯≅HQ¯¯¯¯¯¯ MN¯¯¯¯¯¯¯≅QR¯¯¯¯¯ ∠M≅∠Q

∠R≅∠F ∠N≅∠M QH¯¯¯¯¯¯≅MF¯¯¯¯¯¯
Mathematics
2 answers:
Arada [10]3 years ago
8 0
<span>△FMN ≅ △HQR
so
MF </span>≅<span>  QH
MN </span>≅<span> QR
NF  </span>≅<span> RH
and
</span><span>∠F ≅ ∠H 
∠M ≅ ∠Q
∠N ≅ ∠R
</span><span>
Answer
</span>MN ≅ QR
∠M ≅ ∠Q
<span>QH ≅ MF</span>
devlian [24]3 years ago
6 0

Answer: \overline{MN}\cong\overline{QR}

\angle{M}\cong\angle{Q}

\overline{MF}\cong\overline{QH}

Step-by-step explanation:

We know that if two triangles are congruent , then the corresponding angles and sides are congruent by CPCTC.

Given: \triangle {FMN}\cong\triangle{HQR}

Therefore , the corresponding angles and sides of \triangle {FMN}\text{ and }\triangle{HQR} are congruent.

∠F corresponds ∠H

∠M corresponds ∠Q

∠N corresponds ∠R

⇒ ∠F ≅ ∠H

∠M ≅ ∠Q

∠N ≅ ∠R

\overline{MF}\cong\overline{QH}\\\overline{MN}\cong\overline{QR}\\\overlien{FN}\cong\overline{HR}

So , from the given options, the true congruency statements are :-

\overline{MN}\cong\overline{QR}

\angle{M}\cong\angle{Q}

\overline{MF}\cong\overline{QH}

You might be interested in
Find the GCF using list of factors number 9
DiKsa [7]
The factors are 3 6 and 9
3 0
3 years ago
Read 2 more answers
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
A concrete pillar has the shape of a cylinder. It has a radius of 6 meters and a height of 4 meters. If concrete costs $82 per c
Gnesinka [82]

82

Step-by-step explanation:

6 0
3 years ago
49 PTS
ANTONII [103]

so i am sure you know that 1 hour is sixty minutes

so this is how it woulds

10/1 * 60/1 = 600 minutes

so that means that 10 hours would be equal to 600 minutes

then add on the 39 minutes

639

BUT WAIT there are the seconds

24/1 * 1/60 = 0.4

so 24 seconds is 0.4 (40%) of a minute

so it would take 639.4 minutes for saturn to make a full rotation

i hope this helped and please vote me for brainliest! have a nice day!

8 0
3 years ago
Read 2 more answers
What is the equation, in slope-intercept form, of the line that is parallel to the given line and passes through the point (0,
Mamont248 [21]

Answer:

y=-5x+12


Step-by-step explanation:

just use a graphing calculator and basic knowledge of slope intercept form

7 0
2 years ago
Other questions:
  • Algebra help - please be so kind - god bless. 2&amp;3 please
    7·1 answer
  • The sum of three consecutive even numbers is 48. what is the smallest of these numbers?
    15·1 answer
  • Through: (2,-1) , slope= undefined<br><br> helpppppp i need the answer asap
    6·1 answer
  • (x − 3)(2x2 − 5x + 1)
    8·1 answer
  • Write the equation of the line in slope-intercept form.
    8·1 answer
  • Let x be a random variable representing the amount of sleep each adult in New York City got last night. Consider a sampling dist
    14·1 answer
  • Which number best represents Point Q on the number line below?
    5·1 answer
  • URGENT. Geometric Probability.
    8·2 answers
  • Help me pls ?? 1. Suppose there is a raffle with numbered tickets 1 - 150. One ticket is randomly
    15·1 answer
  • Does 9, 10 and 15 equal a right triangle
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!