Answer:
The probability that at least 13 flights arrive late is 2.5196
.
Step-by-step explanation:
We are given that Southwest Air had the best rate with 80 % of its flights arriving on time.
A test is conducted by randomly selecting 18 Southwest flights and observing whether they arrive on time.
The above situation can be represented through binomial distribution;
![P(X = x) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; x = 0,1,2,3,.........](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20%5Cbinom%7Bn%7D%7Br%7D%5Ctimes%20p%5E%7Br%7D%20%5Ctimes%20%281-p%29%5E%7Bn-r%7D%20%3B%20x%20%3D%200%2C1%2C2%2C3%2C.........)
where, n = number of trials (samples) taken = 18 Southwest flights
r = number of success = at least 13 flights arrive late
p = probability of success which in our question is probability that
flights arrive late, i.e. p = 1 - 0.80 = 20%
Let X = <u><em>Number of flights that arrive late</em></u>.
So, X ~ Binom(n = 18, p = 0.20)
Now, the probability that at least 13 flights arrive late is given by = P(X
13)
P(X
13) = P(X = 13) + P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18)
= ![\binom{18}{13}\times 0.20^{13} \times (1-0.20)^{18-13}+ \binom{18}{14}\times 0.20^{14} \times (1-0.20)^{18-14}+ \binom{18}{15}\times 0.20^{15} \times (1-0.20)^{18-15}+ \binom{18}{16}\times 0.20^{16} \times (1-0.20)^{18-16}+ \binom{18}{17}\times 0.20^{17} \times (1-0.20)^{18-17}+ \binom{18}{18}\times 0.20^{18} \times (1-0.20)^{18-18}](https://tex.z-dn.net/?f=%5Cbinom%7B18%7D%7B13%7D%5Ctimes%200.20%5E%7B13%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-13%7D%2B%20%5Cbinom%7B18%7D%7B14%7D%5Ctimes%200.20%5E%7B14%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-14%7D%2B%20%5Cbinom%7B18%7D%7B15%7D%5Ctimes%200.20%5E%7B15%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-15%7D%2B%20%5Cbinom%7B18%7D%7B16%7D%5Ctimes%200.20%5E%7B16%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-16%7D%2B%20%5Cbinom%7B18%7D%7B17%7D%5Ctimes%200.20%5E%7B17%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-17%7D%2B%20%5Cbinom%7B18%7D%7B18%7D%5Ctimes%200.20%5E%7B18%7D%20%5Ctimes%20%281-0.20%29%5E%7B18-18%7D)
=
= 2.5196
.