Answer: negative acellaration or mass.
Explanation:
the first reason why is that i got that quistion right. and when objects are unbalanced it gives negative acellaration
Answer:
There is a mass of 154 Grams of Carbon Dioxide.
Explanation:
One mole is equal to 6.02 × 10^23 particles.
This means we have 1.05 X 10^24 total particles of Ethane.
Each ethane particle contains 2 carbon atoms.
If every particle of ethane is burned, we will end up with 2.10 x 10^24 molecules of Carbon Dioxide (Particles of Methane x 2, since each Methane particle contains 2 carbon atoms)
Carbon Dioxide has a molar mass of 44.01 g/mol
So if we take our amount of Carbon Dioxide molecules and divide it by 1 mole, ((2.10 x 10^24)/(6.02 x 10^23) = 3.49) we find that we have 3.49 moles of Carbon Dioxide.
Now all we need to do is multiply our moles of carbon dioxide(3.49) by it's molar mass(44.01) while accounting for significant digits.
What you should end up with is 154 Grams of Carbon Dioxide.
Hope this helps (And more importantly I hope I didn't make any errors in my math lol)
As a side note this is all assuming that this takes place at STP conditions.
Answer: The main difference between oxide and oxygen is that oxide is a chemical compound with at least one oxygen atom while oxygen is an element whose atomic number is 8.
Explanation: let me know if it was right or wrong
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M