Answer:
1) The power of Niagara Falls is 1.176 × 10⁹ W
2) The number of 15 W LED light bulbs it could power is 78.4 × 10⁶ light bulbs
Explanation:
1) The Niagara falls water mass flow rate = 2,400,000 kg/s
The height of the fall = 50 meters
The gravitational potential energy = Mass (kg) × height (m) × gravity (9.8 m/s²)
The power = The energy converted per second = Mass flow rate (kg/s) × height (m) × gravity (9.8 m/s²)
Therefore;
The power of Niagara Falls= 2,400,000 kg/s × 50 m ×9.8 m/s²= 1.176 × 10⁹ W
The power of Niagara Falls = 1.176 × 10⁹ W
2) The number, n, of 15 W LED light bulbs it could power is given by the relation;
n × 15 W = 1.176 × 10⁹ W
∴ n = 1.176 × 10⁹ W/(15 W) = 78.4 × 10⁶ light bulbs
The number of 15 W LED light bulbs it could power = 78.4 × 10⁶ light bulbs.
Full Question:
Ammonia chemically reacts with oxygen gas to produce nitric oxide and water. What mass of water is produced by the reaction of 7.7g of ammonia?
Be sure your answer has the correct number of significant digits.
Answer:
12.23g ≈ 12g (2 s.f)
Explanation:
Ammonia chemically reacts with oxygen gas to produce nitric oxide and water. The balanced chemical reaction is given as:
4 NH3 + 5 O2 -------> 4 NO + 6 H2O
From the reaction;
4 mole of ammonia reacts to produce 6 moles of water
From the question;
Moles = mass / molar mass
From the question;
moles of ammonia = mass / molar mass = 7.7 / 17 = 0.4529moles
Number of moles of water produced;
4 = 6
0.4529 = x
x = (0.4529 * 6 ) / 4
x = 0.67935moles
Mass of water = moles * molar mass = 0.67935 * 18 = 12.23g ≈ 12g (2 s.f)
69. The student's skin was obviously warmer than the initial temperature of the bracelet. According to the second law of thermodynamics, heat transfers from a higher temperature to a lower temperature hence heat transfers from the student's skin to the bracelet warming up the bracelet.
70. moles of copper=mass of copper/molar mass of copper
=30.1g/(63.55g/mol)= 0.4736 moles Cu
71. Delta H( heat released) = mCp(deltaT) = 30.1g(0.385 J/gK)(33-19)K = 162.23J
72. Copper is chemically less active than iron.