The given question is incomplete. The complete question is :
In each row check off the boxes that apply to the underlined reactant. The underlined reactant acts as a... (check all that apply)
1. 
here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
2. 
Here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
3. 
Here underlined is 
A. Brønsted-Lowry acid
B. Brønsted-Lowry base
C. Lewis acid
D. Lewis base
Answer: 1. Brønsted-Lowry acid
2. Lewis base
3. Brønsted-Lowry base
Explanation:
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
1. 
As
is donating a proton , it acts as a bronsted acid.
2. 
As
contains a lone pair of electron on nitrogen , it can easily donate electrons to
and act as lewi base.
3. 
As
is accepting a proton , it acts as a bronsted base.
From the Graham's law of effusion;
R1/R2 = √MM2/√MM1
Molar mass of chlorine gas is 71
Therefore;
1.87= √ 71 /√mm1
= 1.87² = 71/mm1
mm1 = 71/1.87²
= 71/3.4969
= 20.3
Thus, the molar mass of the other gas is 20.3 , and i think the gas is neon
Answer:
Choice d. No effect will be observed as long as other factors (temperature, in particular) are unchanged.
Explanation:
The equilibrium constant of a reaction does not depend on the pressure. For this particular reaction, the equilibrium quotient is:
.
Note that the two sides of this balanced equation contain an equal number of gaseous particles. Indeed, both
and
will increase if the pressure is increased through compression. However, because
and
have the same coefficients in the equation, their concentrations are raised to the same power in the equilibrium quotient
.
As a result, the increase in pressure will have no impact on the value of
. If the system was already at equilibrium, it will continue to be at an equilibrium even after the change to its pressure. Therefore, no overall effect on the equilibrium position should be visible.
Eyepiece, finder-scope, optical tube, aperture, focuser, and mount
Answer:
1.67g/cm3
Explanation:
The formula for density is
. The m variable stands for mass and the v variable stands for volume.
The mass of the brown sugar is 10.0g and the volume is 6.0cm3, so we can plug those values into the equation.



Rounded to 3 significant figures, the density of the block of brown sugar is 1.67 g/cm3. If the mass is in grams and the volume is in cm3, the unit for the final answer is
(grams per centimetres cubed).