1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
14

What is the answer of X2/3??

Mathematics
1 answer:
Yuri [45]3 years ago
7 0
1/3x^2

hope this helps
You might be interested in
Write the exponential function that passes through the points (3, 10) and (5, 40)
tigry1 [53]

Answer:

  y = (5/4)2^x

Step-by-step explanation:

The function value increases by a factor of 40/10 = 4 when x increases by 2. The function can be written as ...

  y = (reference value)·(growth factor)^((x -reference)/(change in x for growth factor))

  y = 10·4^((x-3)/2) . . . . . . using point (3, 10) as a reference

This can be simplified to ...

  y = 10·2^(x -3) = 10/8·2^x

  y = (5/4)2^x

6 0
3 years ago
After collecting the variables on the left side of the equation, the coefficient of the x term will be?
Kipish [7]

Answer:

56

Step-by-step explanation:

3 0
3 years ago
Square A has a side length of (2x-7) and Square B has a side length of (-4x+18). How much bigger is the perimeter of Square B th
dusya [7]
4(2x-7)=8x-28
4(-4x+18)=-16x+72
(8x-28)-(-16x+73)

24x+45
8 0
3 years ago
-4p + 19 = 11<br> please help me due tomorrow
Valentin [98]

Answer:

p=2

Step-by-step explanation:

−4p=11−19

−4p=−8

then you divide both sides by -4 and two negatives make a positive.

​​

6 0
3 years ago
Please I need help with differential equation. Thank you
Inga [223]

1. I suppose the ODE is supposed to be

\mathrm dt\dfrac{y+y^{1/2}}{1-t}=\mathrm dy(t+1)

Solving for \dfrac{\mathrm dy}{\mathrm dt} gives

\dfrac{\mathrm dy}{\mathrm dt}=\dfrac{y+y^{1/2}}{1-t^2}

which is undefined when t=\pm1. The interval of validity depends on what your initial value is. In this case, it's t=-\dfrac12, so the largest interval on which a solution can exist is -1\le t\le1.

2. Separating the variables gives

\dfrac{\mathrm dy}{y+y^{1/2}}=\dfrac{\mathrm dt}{1-t^2}

Integrate both sides. On the left, we have

\displaystyle\int\frac{\mathrm dy}{y^{1/2}(y^{1/2}+1)}=2\int\frac{\mathrm dz}{z+1}

where we substituted z=y^{1/2} - or z^2=y - and 2z\,\mathrm dz=\mathrm dy - or \mathrm dz=\dfrac{\mathrm dy}{2y^{1/2}}.

\displaystyle\int\frac{\mathrm dy}{y^{1/2}(y^{1/2}+1)}=2\ln|z+1|=2\ln(y^{1/2}+1)

On the right, we have

\dfrac1{1-t^2}=\dfrac12\left(\dfrac1{1-t}+\dfrac1{1+t}\right)

\displaystyle\int\frac{\mathrm dt}{1-t^2}=\dfrac12(\ln|1-t|+\ln|1+t|)+C=\ln(1-t^2)^{1/2}+C

So

2\ln(y^{1/2}+1)=\ln(1-t^2)^{1/2}+C

\ln(y^{1/2}+1)=\dfrac12\ln(1-t^2)^{1/2}+C

y^{1/2}+1=e^{\ln(1-t^2)^{1/4}+C}

y^{1/2}=C(1-t^2)^{1/4}-1

I'll leave the solution in this form for now to make solving for C easier. Given that y\left(-\dfrac12\right)=1, we get

1^{1/2}=C\left(1-\left(-\dfrac12\right)^2\right))^{1/4}-1

2=C\left(\dfrac54\right)^{1/4}

C=2\left(\dfrac45\right)^{1/4}

and so our solution is

\boxed{y(t)=\left(2\left(\dfrac45-\dfrac45t^2\right)^{1/4}-1\right)^2}

3 0
3 years ago
Other questions:
  • What is 5(x-6)=2(x+3)
    7·1 answer
  • 30 points for how ever answers this In order to find the amount of paint needed to fill a bucket, which of the following needs t
    10·2 answers
  • Look for a pattern in the table to determine which model best describes the data.
    11·2 answers
  • John took a 5 1/2 mile walk to his friend's house. He left at 11 a.M. And arrived at his friend's house at 12:45 p.M. Therefore
    5·1 answer
  • Suppose the coffee industry claimed that the average U.S. adult drinks 1.7 cups of coffee per day. To test this claim, a random
    11·1 answer
  • In the following figure, select whether the green and red graphics are functions or not
    10·1 answer
  • In the figure below, angles PQS and
    15·1 answer
  • Can someone pls help me solve thiss
    12·1 answer
  • The ratio of the side lengths of a quadrilateral are 2:3:5:7. If the quadrilateral's perimeter is 68, what is the length of each
    9·1 answer
  • Which statement describes the behavior of the function f (x) = StartFraction 3 x Over 4 minus x EndFraction? The graph approache
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!