When discussing Newton's laws of motion, particularly Newton's third law of motion, the terms that almost everyone will use are "action" and "reaction".
You must not take this to mean that they understand what they're talking about.
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
Vagetagble, fruits,fresh milk and juice vitamins c
It would last as long as the applied force continued, or until the accelerating object hit something.
Answer:
40.0⁰
Explanation:
The formula for calculating the magnetic flux is expressed as:
where:
is the magnetic flux
B is the magnetic field
A is the cross sectional area
is the angle that the normal to the plane of the loop make with the direction of the magnetic field.
Given
A = 0.250m²
B = 0.020T
= 3.83 × 10⁻³T· m²
3.83 × 10⁻³ = 0.020*0.250cosθ
3.83 × 10⁻³ = 0.005cosθ
cosθ = 0.00383/0.005
cosθ = 0.766
θ = cos⁻¹0.766
θ = 40.0⁰
<em>Hence the angle normal to the plane of the loop make with the direction of the magnetic field is 40.0⁰</em>