The Griffith's experiment, the Avery-MacLeod-McCarty experiment, and the Hershey–Chase experiments were the set of experiments that established DNA as the key hereditary molecule. The Avery-MacLeod-McCarty experiment was an extension to the Griffith's experiment. The heat killed virulent S strain cells of the Griffith's experiment were lysed to form a supernatant containing a mix of RNA, DNA, proteins and lipids from the cell. The supernatent was equally divided into 3 parts after the removal of the lipids. The 3 parts were respectively treated with an RNAase to degrade the RNA, DNAase to degrade the DNA and proteinase to degrade the proteins. The treated supernatant was then added into the culture containing the non-virulent R cells. In case of the supernatant treated with the DNAse, no transformation of R cells into S cells occurred. The transformation of R cells to S cells occurred in the proteinase and the RNAse cases. This indicated that DNA was the hereditary molecule and not protein or RNA.

Answer:
b) transcription and translation occur simultaneously
Explanation:
The ATP molecule is composed of three components. At the centre is a sugar molecule, ribose (the same sugar that forms the basis of RNA). Attached to one side of this is a base (a group consisting of linked rings of carbon and nitrogen atoms); in this case the base is adenine. The other side of the sugar is attached to a string of phosphate groups. These phosphates are the key to the activity of ATP.
Answer:
lateral and venteral
Explanation:
the chain extends from the upper neck down to the coccyx, forming the upward coccygeal gangilion
Answer:
A lot
Explanation:
am playing there around 195 counties and 7 continets my bad