Answer:
C. Recheck the numbers of each atom on each side of the equation
to make sure the sides are equal.
D. Choose coefficients that will balance the equation
Explanation:
In balancing of chemical equation, the number of atoms on both sides must be equal in adherence to the law of conservation of mass.
Using the method of inspection, the equation is first observed to know the relationship between the combining atoms and the resulting ones.
After observing the reaction, put a coefficient that will balance the equation. Then recheck the number of each atom on both side of the equation. One can repeat the process till the equation is balanced.
Answer:
Explanation:
The work done on the capacitor is equal to the difference in potential energy stored in the capacitor in two different cases.
The potential energy is given by the following formula:
where C can be calculated using the plate separation and area.
Therefore, the potential energy in the first case is
In the second case:
The permittivity of the air is very close to that of vacuum, which is 8.8 x 10^-12.
So, the difference in the potential energy is
Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:
Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:
In words, the value of q₃ must be 5.3nC.