Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
It’s true all the way. It’s true
Answer:
From question (a) and (b) the pendulum motion is perpendicular to the force so the normal force will do no work and the tension in the string of the pendulum will not work

And
so

c
An example will be a where a stone is attached to the end of a string and is made to move in a circular motion while keeping the other end of the string in a fixed position
d
A dog walking along a surface which has friction, here the frictional force would acting in the direction of the motion and this would do positive work
Explanation:
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.