Answer:
63 it's the closest
Step-by-step explanation:
Answer:
0.34134
Step-by-step explanation:
In other to solve for this question, we would be using the z score formula
z = (x - μ) / σ
x = raw score
μ = mean
σ = Standard deviation
We are told in the question to find the probability that a worker selected at random makes between $350 and $400
let x1 = 350 and x2= 400 with the mean μ = 400 and standard deviation σ = $50.
z1 = (x1 - μ) / σ = (350-400) / 50 = -1
z2 = (x2 - μ) / σ = (400 - 400) / 50 = (0/50) = 0
From tables, P(z <= -1) = 0.15866
P(z <= 0) = 0.5
Then, the probability would give us, P(-1 ≤ z ≤ 0) =0.5 - 0.15866 =
0.34134
Hence, The probability that a worker selected at random makes between $350 and $400 = 0.34134
Answer:
Yes thats correct
Step-by-step explanation:
Answer: Black
Step-by-step explanation: I feel like the higher the line is on the graph, the farther they have moved, so since the black line is the lowest, it might be Noah.
Hope this helps!
Answer:
Solution : 8i
Step-by-step explanation:
We can use the trivial identities cos(π / 2) = 0, and sin(π / 2) = 1 to solve this problem. Let's substitute,
= 
And of course 1i = i, so we have the expression 8(0 + i ). Distributing the " 8, " 8( 0 ) = 0, and 8(i) = 8i, making the fourth answer the correct solution.