Answer:
WOULD HAVE HELPED IF I HAVE STUDIED THIS TOPIC I AM EXTREMELY SORRY
Explanation:
Answer:
1)
- frequencies of light-colored mice ≅ 0.74
- frequencies of dark-colored mice ≅ 0.26
2)
- frequencies of light-colored mice ≅ 0.13
- frequencies of dark-colored mice ≅ 0.87
3)
- q² = 0.74
- p² = 0.02
- 2pq = 0.24
4)
- q² = 0.13
- p² = 0.4
- 2pq = 0.46
5)
The dark-colored fur seems to have the greatest overall selective advantage
6)
Dark lava, that changed the color of the substrate, from light to dark.
7)
Because to produce dark color, animals from the different regions suffered different mutations that drove them to have almost the same dark fur color. All of the animals are inhabiting dark substrate, which means that this environmental condition is favoring the same phenotype.
8)
To see if the mice population is evolving, you need to take a sample of animals per year, through many years, and analyze if it is changing or not. If the population is evolving, you will notice a change in the allelic and genotypic frequencies over the years, favoring one genotype or the other. If the population is not evolving, the frequencies will keep equal through the years, it will not change.
Explanation:
Due to technical problems, you will find the complete explanation in the attached files.
Answer:
d. Water is transported in the phloem.
Explanation:
Xylem is the vascular tissue responsible for the movement of water and dissolved minerals from roots to various plant parts. Phloem is another vascular tissue that serves mainly in the translocation of sugars. The cohesion-tension model of water transport explains that the upward movement of water from roots to the aerial plant parts is drive by transpiration pull. Transpiration of water from leaves results in a large negative pressure in xylem elements. Cohesion and adhesion properties of water maintain the water column in xylem elements.
Answer:
A
Explanation:
Geothermal power plants, which use heat from deep inside the Earth to generate steam to make electricity.
Answer:
K-strategists
Explanation:
Reproductive pattern in organisms can be typically categorised into two:
1. K- Strategy
2. R- Strategy
K-strategists are organisms that lives in very stable environments and gives birth to fewer organisms. Most of these organisms reproduce close the carrying capacity of their habitat. They offer support and protection to their progeny to the points where they become indepedent. The mortality rate is very low in such organisms and so is the birth rate too.
R-strategists are organisms whose main aim is to populate and dominate an environment. They reproduce exponentially and offers no life support to their progeny in their early developmental stage. They often occupy unstable and highly unpredictable environments. Most R organisms have a very low and short life expectancy. Since they produce more offspring and they live under adverse environments, mortality rate is high.
Examples of K-strategists are elephants and man
Examples of R-stategists are grasses and microbes.