Answer:
A
Step-by-step explanation:
The solution to these two graphs will be when they are equal. Therefore:

Hope this helps!
Answer:
bfcfbdgbcbcvgb
Step-by-step explanation:
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ = 152.5
For the alternative hypothesis,
µ ≠ 152.5
This is a two tailed test.
Since no population standard deviation is given, the distribution is a student's t.
Since n = 231
Degrees of freedom, df = n - 1 = 231 - 1 = 230
t = (x - µ)/(s/√n)
Where
x = sample mean = 148.9
µ = population mean = 152.5
s = samples standard deviation = 27.4
t = (148.9 - 152.5)/(27.4/√231) = - 2
We would determine the p value using the t test calculator. It becomes
p = 0.047
Since alpha, 0.05 > thanthere sufficient evidence to conclude that the self-efficacy of adults who have experienced childhood trauma differs from that in the general population of individuals the p value, 0.047, then we would reject the null hypothesis. Therefore, At a 5% level of significance, there is sufficient evidence to conclude that the self-efficacy of adults who have experienced childhood trauma differs from that in the general population of individuals
Answer: The expressions for the length and width of the new patio are

And the area of the new patio is 384 sq. feet.
Step-by-step explanation: Given that Stephen has a square brick patio. He wants to reduce the width by 4 feet and increase the length by 4 feet.
The length of one side of the square patio is represented by x.
We are to write the expressions for the length and width of the new patio and then to find the area of the new patio if the original patio measures 20 feet by 20 feet.
Since Stephen wants to reduce width of the patio by 4 feet, so the width of the new patio will be

The length of the patio is increased by 4 feet, so the length of the new patio will be

Now, if the original patio measures 20 feet by 20 feet, then we must have

and

Therefore, the area of the new patio is given by

Thus, the expressions for the length and width of the new patio are

And the area of the new patio is 384 sq. feet.