Answer:
45
Step-by-step explanation:
Two tangents drawn to a circle from an outside point form arcs and an angle, and this formula shows the relation between the angle and the two arcs.
m<EYL = (1/2)(m(arc)EVL - m(arc)EHL) Eq. 1
The sum of the angle measures of the two arcs is the angle measure of the entire circle, 360 deg.
m(arc)EVL + m(arc)EHL = 360
m(arc)EVL = 360 - m(arc)EHL Eq. 2
We are given this:
m<EYL = (1/3)m(arc)EHL Eq. 3
Substitute equations 2 and 3 into equation 1.
(1/3)m(arc)EHL = (1/2)[(360 - m(arc)EHL) - m(arc)EHL]
Now we have a single unknown, m(arc)EHL, so we solve for it.
2m(arc)EHL = 3[360 - m(arc)EHL - m(arc)EHL]
2m(arc)EHL = 1080 - 6m(arc)EHL
8m(arc)EHL = 1080
m(arc)EHL = 135
Substitute the arc measure just found in Equation 3.
m<EYL = (1/3)m(arc)EHL
m<EYL = (1/3)(135)
m<EYL = 45
Answer:
Step-by-step explanation:
To write this sentence as equation
We get
r×338+97=r
338r+97=r
To solve further
r-338r=97
-337r=97
r=-0.2878
Answer:
Rotate 90 degrees clockwise around the origin and then translate down. Reflect across the x-axis and then reflect across the y-axis.
Step-by-step explanation:
Reflection across the y-axis. 90o counter clockwise rotation. 2. Multiple-choice. 1 minute. Q. Identify the transformation from ABC to A'B'C'. Draw the final image created by reflecting triangle RST in the x-axis and then rotating the image 90° counterclockwise about the origin. BER goo Clockwise 90c ...C-level G2-1 Reflections and Rotations ... X-axis. 00. G2-2 Rotations. 4. Rotate the figure 90° clockwise around the origin. ... Rotation 90° counter.
Answer:
Choice A
Step-by-step explanation:
5 red socks, 2 white socks, 3 blue socks = 10 socks
1 st sock red : 5 / 10
2nd sock red : 4/9
we didn't put the sock back
a pair of red socks
5/10 * 4/9 = 20/90 = 2/9
the answer is five point six five, 5.65