1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
11

What is 1/2 x 2/3 x 3/4

Mathematics
2 answers:
Tju [1.3M]3 years ago
8 0
The answer is:  "  \frac{1}{4} " ;  or, write as:  "0.25" .
___________
Explanation:
__________
Method 1)
__________
\frac{1}{2}*\frac{2}{3}*\frac{3}{4} ;

= \frac{1 * 2 * 3}{2* 3 *4} ;

= \frac{6}{24} ; 

= \frac{6/6}{24/6} ;

= \frac{1}{4} ;  or, write as:  "0.25" .
_________________
Method 2)
_________________
\frac{1}{2}*\frac{2}{3}*\frac{3}{4} ;

= \frac{1 * 2 * 3}{2* 3 *4} ;

→ The "2's" & "3's" in both the numerator & denominator "cancel out" to "1" ;  {since:  "(2÷2=1)" ; and "(3÷3=1" ) ; 

→ And we have:

   
→  \frac{1 * 1 * 1}{1 * 1 * 4} ;

            =  \frac{1}{4} ;  or; write as:  "0.25" .
________________
Method 3)  (similar to "Method 2" above):
_________________
\frac{1}{2}*\frac{2}{3}*\frac{3}{4} ;

= \frac{1 * 2 * 3}{2* 3 *4} ;

→ The "2" in numerator cancels out to "1" ; and the "4" in the denominator cancels to "2" ;  {since:  "(4÷2=2)" ; and since: "(2÷2=1)" ;

→  The "3's" in both the numerator AND denominator "cancel out" to "1" ;                      {since:  "(3÷3=1" ) ; 

→ And we have:

   →  \frac{1 * 1 * 1}{2 * 1 * 2} ;

            =  \frac{1}{4} ;  or; write as:  "0.25" .
_______________
Method 4)
_______________
\frac{1}{2}*\frac{2}{3}*\frac{3}{4} ;

→ Cancel out the "2" in the denominator of "\frac{1}{2}" ; to a "1" ; AND cancel out the "2" in the numerator of "\frac{2}{3} " ; to a "1" ;
       {since: "{2÷2=1}" ;
 
 → Cancel out the "3" in the denominator of "\frac{2}{3} " ; to a "1" ;
AND cancel out the "3" in the numerator of: "\frac{3}{4}" ; to a "1" ;
      {since:  "(3÷3=1}" ;

→ And we have:

   →  \frac{1}{1} * \frac{1}{1} * \frac{1}{4} ; 

              = \frac{1 * 1 * 1}{1 * 1 *4} ; 
           
              =  \frac{1}{4} ;  or; write as:  "0.25" .
________________
Variation:
________________
At the point when we have:
________________

   → \frac{1}{1} * \frac{1}{1} * \frac{1}{4} ; 
________________
We can eliminate the: 

"  \frac{1}{1}  *  \frac{1}{1}  " ;

{since: "  \frac{1}{1} = 1 " ; 

{and since:  "  \frac{1}{1}  *  \frac{1}{1}  "  =  1 * 1 = 1 ; 

and since: "1", multiplied by any value, equals that exact same value; 
_____________
THAT IS:
_____________
    → \frac{1}{1}  *  \frac{1}{1}   *  \frac{1}{4}  ;

         =  1  *  1  *  \frac{1}{4} ;

         =  (1 * 1)  *  \frac{1}{4} ;

         =    1 *   \frac{1}{4}  ;
  
         =    \frac{1}{4} ;  or, write as:  "0.25" .
_____________
Method 5)   (similar to "Method 4" above):
____________________
\frac{1}{2}*\frac{2}{3}*\frac{3}{4}  ;

  → Cancel out the "2" in the numerator of "\frac{2}{3}" ; to a " 1 " ; 
AND cancel out the "4" in the denominator of "\frac{3}{4}"; to a "2" ;
       {since: "{4÷2=2}" ; and since: "{2÷2=1}" ; 

  → Cancel out the "3" in the denominator of "\frac{2}{3} " ; to a "1" ;
AND cancel out the "3" in the numerator of: "\frac{3}{4}" ; to a "1" ;
      {since:  "(3÷3=1}" ;

→ And we have:
_____________
   →  \frac{1}{2} * \frac{1}{1} * \frac{1}{2} ; 

              = \frac{1 * 1 * 1}{2 * 1  *2} ; 

                      =  \frac{1}{4} ; or, write as:  "0.25" .
__________
Variation:
__________
At the point when we have:
__________
   →  \frac{1}{2} * \frac{1}{1} * \frac{1}{2} ; 
__________
We can eliminate the: 

"  \frac{1}{1}  " ; 

{since: "  \frac{1}{1}  =  1 " } ; 

{and since: "1", multiplied by any value, equals that exact same value} ; 
___________
THAT IS:
___________
   →  \frac{1}{2} * \frac{1}{1} * \frac{1}{2} ; 

      =    \frac{1}{2}   *    1    *    \frac{1}{2}  ;

          =    \frac{1}{2}   *    \frac{1}{2}  ;

          =    \frac{1*1}{2*2}  ;

              =  \frac{1}{4} ; or, write as:  "0.25" .
__________________________________________________________
inna [77]3 years ago
4 0
       
I believe the answer is 0.25



You might be interested in
Printing a newsletter costs $1.50 per copy plus $450 in printer's fees. The copies are sold for $3 each.How many copies of the n
alekssr [168]

Answer:

300 Copies

Step-by-step explanation:

Break even Units = Fixed Costs / (Price - Variable Cost)

Fixed Costs = $450

Variable Cost = 1.5

Price = 3

Break Even Units = 450 / (3 - 1.5)

Break Even Units = 450 / 1.5

Break Even Units = 300

300 Copies must be sold to break even.

I hope this helps!

-The BusinessMan

8 0
3 years ago
9. Bella hiked a 13-kilometer trail at Great Peak. How many meters did Belle
wariber [46]

Answer:

D. 13,000

Step-by-step explanation:

If there are 1,000 m in 1 km, we can find the number of meters she hiked by multiplying 13 by 1,000:

13(1000)

= 13,000

So, Belle hiked 13,000 meters.

The correct answer is D. 13,000

8 0
2 years ago
What is the distance between R(5,2) and S(4,-7)?<br><br> Round to the nearest tenth.
Naddik [55]
You can calculate the distance between two point using this fomula: 

√(x_2-x_1)^2+(y_2-y_1)^2


If you insert you values you get:

 √(4-5)^2+(-7-2)^2 = 9.06 = 9.1
5 0
2 years ago
Someone please help ASAP will give brainliest
Svetach [21]

Answer:

A

Step-by-step explanation:

The degree is cubic (3) and there are 3 terms X^3, X^2, X

7 0
2 years ago
Jeremy ran 1500 meters in 4 minutes, 45 seconds. How fast did he run in meters per second?
soldi70 [24.7K]

Answer:

5.26 meters per second

7 0
3 years ago
Other questions:
  • Which statement best describes the expression 3 + y ÷ 2?
    8·1 answer
  • A small combination lock on a suitcase has 3
    15·1 answer
  • What is 1 divided by 0.25 while showing how I got the answer
    10·2 answers
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7B-23%7D%7B30%7D%20%2B%20%5Cfrac%7B5%7D%7B48%7D" id="TexFormula1" title="\frac{-23}{30
    11·1 answer
  • √ 128 = √ 16 × √ 8 = 4√ 8
    6·2 answers
  • I will give brain whoever gives the best answer
    9·1 answer
  • Which is not equivalent to the equation P=2L+2W
    9·1 answer
  • if a girl has 15 dirhums to buy lunch. she wants to buy one of each of the foods. how much more money will she need to buy lunch
    9·1 answer
  • An expression is shown. 1/6 + 1/6 What is the value of the expression?
    12·2 answers
  • Select the correct answer:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!