1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
3 years ago
11

Evaluate the following expression when x=14. X^2+5x+11

Mathematics
2 answers:
Effectus [21]3 years ago
7 0

Start by substituting 14 in for x everywhere that x appears in the problem.

So we have (14)² + 5(14) + 11.

Remember that PEMDAS tells you to deal

with your exponents before multiplying.

So you must square the 14 to get 196.

So we have 196 + 5(14) + 11.

Now multiply 5(14) to get 70.

So we have 196 + 70 + 11.

Now we can simply add to get 277.

NikAS [45]3 years ago
6 0

Answer:

277

Step-by-step explanation:

14^2+5(14)+11=

196+70+11=

277

You might be interested in
2.386 rounded to the nearest tenth
svetoff [14.1K]

Answer:

Los números decimales son una combinación de números enteros y números que se encuentran entre los números enteros. A veces es importante poder comparar decimales para saber cuál es mayor. Por ejemplo, si alguien corrió los 100 metros planos en 10.57 segundos, y alguien más los corrió en 10.67 segundos, puedes comparar los decimales para determinar qué tiempo es más rápido. Saber cómo comparar decimales requiere el entendimiento del valor de posición decimal, y es similar a comprar números enteros.

 

Cuando trabajamos con decimales, hay veces que no se necesita un número preciso. En tal caso, es útil redondear números decimales. Por ejemplo, si la bomba de una gasolinera muestra que llenaste el tanque del carro de un amigo con 16.478 galones de gasolina, podrías querer redondear el número y decirle a tu amigo que le pusiste 16.5 galones.

Step-by-step explanation:

Otra forma de comparar decimales es comparar los dígitos en cada número, empezando con el lugar de posición mayor, que es el de la izquierda. Cuando un dígito en un número decimal es mayor que el dígito correspondiente en el otro número, entonces ése número decimal es mayor.

 

Por ejemplo, primero compara los dígitos de las décimas. Si son iguales, continúa con el lugar de las centésimas. Si esos dígitos no son iguales, el decimal con el dígito mayor es el número decimal mayor. Observa cómo se hace esto en los ejemplos siguientes.

6 0
3 years ago
(5/4 × 54/48) + (5/4 × 105/75)​
Kitty [74]

101/32 or 3 5/32 or 3.15625

(5/4 × 54/48) = 45/32

(5/4 × 105/75) = 7/4

7/4 x 8 top & bottom =56/32

45+56=101

Hope this helps!

8 0
2 years ago
Lena found a 5/8
DENIUS [597]

Answer:

Naomi had the correct measurement the ring weighed 0.625 carats

Step-by-step explanation:

* The diamond ring weighed 5/8 carats

- To know who is right lets change the fraction 5/8 to a decimal number

∵ 5/8 means 5 ÷ 8

- 5 is smaller than 8 so we will multiply it by 10 and

 insert decimal point in the quotient (answer of division)

∴ It will be 50 ÷ 8 = 6 and remainder 2/8 ⇒ 1/4

∴ The quotient = 0.6 and remainder 1/4

- 1 is smaller than 4 so we will multiply it by 10

∴ It will be 10 ÷ 4 = 2 and remainder 2/4 ⇒ 1/2

∴ The quotient = 0.62 and remainder 1/2

- 1 is smaller than 2 so we will multiply it by 10

∴ It will be 10 ÷ 2 = 5 without remainder

∴ The quotient = 0.625

* Naomi had the correct measurement the ring weighed 0.625 carats

8 0
3 years ago
Read 2 more answers
Find \tan\left(\frac{17\pi}{12}\right)tan( 12 17π ​ )tangent, left parenthesis, start fraction, 17, pi, divided by, 12, end frac
uranmaximum [27]

One way to do this is to notice

\dfrac{17\pi}{12}=\dfrac\pi6+\dfrac{5\pi}4

Then

\tan\dfrac{17\pi}{12}=\tan\left(\dfrac\pi6+\dfrac{5\pi}4\right)=\dfrac{\tan\frac\pi6+\tan\frac{5\pi}4}{1-\tan\frac\pi6\tan\frac{5\pi}4}

We have

\tan\dfrac\pi6=\dfrac{\sin\frac\pi6}{\cos\frac\pi6}=\dfrac{\frac12}{\frac{\sqrt3}2}=\dfrac1{\sqrt3}

and since \tan x has a period of \pi,

\tan\dfrac{5\pi}4=\tan\left(\pi+\dfrac\pi4\right)=\tan\dfrac\pi4=1

and so

\tan\dfrac{17\pi}{12}=\dfrac{\frac1{\sqrt3}+1}{1-\frac1{\sqrt3}}=\dfrac{1+\sqrt3}{\sqrt3-1}=2+\sqrt3

7 0
3 years ago
A rectangular mat has a length of 12 in. and a width of 4 in. Drawn on the mat are three circles. Each circle has a radius of 2
pickupchik [31]

|\Omega|=4\cdot12=48\\ |A|=3\cdot3.14\cdot2^2=37.68\\\\ P(A)=\dfrac{37.68}{48}\approx0.79

7 0
3 years ago
Other questions:
  • 2 times 2 times 13 what is the missing number
    10·1 answer
  • Write the expression as the sine, cosine, or tangent of an angle. sin 5x cos x - cos 5x sin x
    15·1 answer
  • Square root of 300x to the fourth power
    13·1 answer
  • Your company purchase a 12 month insurance policy for $36000 in January
    7·2 answers
  • Can someone solve numbers 3 and 4, and show your work plz
    13·1 answer
  • Find the value of x. Round your answer to the nearest tenth.<br> 57°<br> 15<br> Х<br> X =
    11·1 answer
  • HELP IM TIMED. ILL MARK BRAINLIEST!
    13·2 answers
  • Tony’s investments lost $12,545.50 in value over the past 2.5 months. On average, how much did his investments change each month
    9·1 answer
  • Please help! I will give brainliest to the first correct answer!
    9·1 answer
  • BRAINLIEST FOR CORRECT ANSWER ASAP
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!