Answer:
y= 288x + 7.99
Step-by-step explanation:
# of tickets : x
y = 289x + 7.99
⬇️ _________ put in y = mx + b
y = 289(6) + 7.99
⬇️ _________ plug in
y = 1734 + 7.99
⬇️ _________ Add
y = 1741.99
HOPE THIS HELPS! (:
Step-by-step explanation:
as the velocity is not constant over time, we actually have to integrate v(t) over the interval 0<=t<=5 to get the distance.
v(t) = 60×ln(t + 1)
V(t) = 60 × integral(ln(t + 1)) between 0 and 5.
integral(ln(t + 1)) = (t + 1)ln(t + 1) - t + C
V(t) = 60 × ((t + 1)ln(t + 1) - t + C)
the distance traveled between t = 0 and t = 5 is then
60 × ((5 + 1)ln(5 + 1) - 5 + C) - 60 × ((0 + 1)ln(0 + 1) - 0 + C) =
= 60×(6ln(6) - 5 + C) - 60×(1ln(1) + C) =
= 60×(5.750556815... + C) - 60×C =
= 60×5.750556815... = 345.0334089... ≈ 345 km
Answer:
2 lol
Step-by-step explanation:
See the attached figure to better understand the problem
we know that
PB+BQ=1000 ft------->PB=1000-BQ-------> equation 1
in the triangle PAB
tan 50=AB/PB----------> AB=PB*tan 50------> equation 2
in the triangle ABQ
tan 25=AB/BQ------> AB=BQ*tan 25-------> equation 3
equals equation 2 and equation 3
PB*tan 50=BQ*tan 25--------> equation 4
substitute equation 1 in equation 4
[1000-BQ]*tan 50=BQ*tan 25-----> 1000*tan 50-BQ*tan 50=BQ*tan 25
BQ*[tan 25+tan 50]=1000*tan 50-----> BQ=1000*tan 50/[tan 25+tan 50]
BQ=718.76 ft
PB=1000-718.76-----> PB=281.24 ft
AB=PB*tan 50-----> 281.24*tan 50------> 335.17 ft
the answer is
335.17 ft