<em>a = 30°</em>
<em>b = 70°</em>
<em>c = 80°</em>
- Step-by-step explanation:
<em>Hi there ! </em>
<em />
<em>a ; b ; c = angles</em>
<em>a + b + c = 180°</em>
<em>b + c = 5a</em>
<em><u>replace (b + c)</u></em>
<em>a + (b + c) = 180</em>
<em>a + 5a = 180</em>
<em>6a = 180</em>
<em>a = 30°</em>
<em />
<em>b + c = 180 - a</em>
<em>b + c = 150</em>
<em>c = b + 10</em>
<em><u>replace c</u></em>
<em>b + (b + 10) = 150</em>
<em>2b = 150 - 10</em>
<em>2b = 140</em>
<em>b = 70°</em>
<em>c = b + 10</em>
<em>c = 80°</em>
<em>Good luck !</em>
The answer is B, if you earn 200 points, then you receive 3 stars
<span>2x +3 + 2x + 4 + 5x + 1 = 0
2x + 2x + 5x + 3 + 4 + 1
2x + 2x = 4x
4x + 5x = 9x
9x + 3 + 4 = 9x + 7
9x + 7 + 1
9x + 8 = 0
0 - 8 =-8
9x / 9 = 8 / 9
x = -8/9 </span>
This would be the difference of perfect squares.
x^2 - 9
(x - 3) (x + 3)
Answer:
![\dfrac{2x}{5}\sqrt[3]{50x^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B2x%7D%7B5%7D%5Csqrt%5B3%5D%7B50x%5E2%7D)
Step-by-step explanation:
Since the root indices are the same, the fraction can be combined under one radical. Then you want to do two things:
- factor out perfect cubes
- make the denominator a perfect cube (so it can be factored out)
__
![\displaystyle\dfrac{\sqrt[3]{16x^8y^2}}{\sqrt[3]{5x^3y^2}}=\sqrt[3]{\dfrac{16x^8y^2}{5x^3y^2}}=\sqrt[3]{\dfrac{16x^5}{5}}=\sqrt[3]{\dfrac{(2x)^3\cdot2\cdot5^2x^2}{5^3}}\\\\=\boxed{\dfrac{2x}{5}\sqrt[3]{50x^2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cdfrac%7B%5Csqrt%5B3%5D%7B16x%5E8y%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B5x%5E3y%5E2%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7B16x%5E8y%5E2%7D%7B5x%5E3y%5E2%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7B16x%5E5%7D%7B5%7D%7D%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%282x%29%5E3%5Ccdot2%5Ccdot5%5E2x%5E2%7D%7B5%5E3%7D%7D%5C%5C%5C%5C%3D%5Cboxed%7B%5Cdfrac%7B2x%7D%7B5%7D%5Csqrt%5B3%5D%7B50x%5E2%7D%7D)